Suppr超能文献

基于颅内 EEG 的扩散距离和贝叶斯线性判别分析的癫痫发作预测。

Epileptic Seizure Prediction Using Diffusion Distance and Bayesian Linear Discriminate Analysis on Intracranial EEG.

机构信息

1 School of Microelectronics, Shandong University, Jinan 250100, P. R. China.

2 School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, P. R. China.

出版信息

Int J Neural Syst. 2018 Feb;28(1):1750043. doi: 10.1142/S0129065717500435. Epub 2017 Aug 16.

Abstract

Epilepsy is a chronic neurological disorder characterized by sudden and apparently unpredictable seizures. A system capable of forecasting the occurrence of seizures is crucial and could open new therapeutic possibilities for human health. This paper addresses an algorithm for seizure prediction using a novel feature - diffusion distance (DD) in intracranial Electroencephalograph (iEEG) recordings. Wavelet decomposition is conducted on segmented electroencephalograph (EEG) epochs and subband signals at scales 3, 4 and 5 are utilized to extract the diffusion distance. The features of all channels composing a feature vector are then fed into a Bayesian Linear Discriminant Analysis (BLDA) classifier. Finally, postprocessing procedure is applied to reduce false prediction alarms. The prediction method is evaluated on the public intracranial EEG dataset, which consists of 577.67[Formula: see text]h of intracranial EEG recordings from 21 patients with 87 seizures. We achieved a sensitivity of 85.11% for a seizure occurrence period of 30[Formula: see text]min and a sensitivity of 93.62% for a seizure occurrence period of 50[Formula: see text]min, both with the seizure prediction horizon of 10[Formula: see text]s. Our false prediction rate was 0.08/h. The proposed method yields a high sensitivity as well as a low false prediction rate, which demonstrates its potential for real-time prediction of seizures.

摘要

癫痫是一种慢性神经系统疾病,其特征是突然且明显不可预测的发作。一个能够预测发作发生的系统至关重要,它可能为人类健康开辟新的治疗可能性。本文提出了一种使用颅内脑电图(iEEG)记录中的新特征-扩散距离(DD)进行癫痫发作预测的算法。对分段脑电图(EEG)进行小波分解,并利用尺度 3、4 和 5 的子带信号提取扩散距离。然后,将构成特征向量的所有通道的特征馈送到贝叶斯线性判别分析(BLDA)分类器中。最后,应用后处理过程来减少假警报。该预测方法在公共颅内 EEG 数据集上进行了评估,该数据集包含 21 名患者的 577.67[Formula: see text]h 颅内 EEG 记录和 87 次癫痫发作。对于 30[Formula: see text]min 的发作发生期,我们达到了 85.11%的灵敏度,对于 50[Formula: see text]min 的发作发生期,我们达到了 93.62%的灵敏度,预测潜伏期均为 10[Formula: see text]s。我们的假预测率为 0.08/h。该方法具有较高的灵敏度和较低的假预测率,这表明其具有实时预测癫痫发作的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验