Suppr超能文献

通过模糊聚类方法对纵向移动健康数据进行研究:以儿童变应性鼻结膜炎为例的功能性数据分析。

A study of longitudinal mobile health data through fuzzy clustering methods for functional data: The case of allergic rhinoconjunctivitis in childhood.

机构信息

Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy.

Department of Pediatric Pneumology and Immunology, Charitè Medical University of Berlin, Berlin, Germany.

出版信息

PLoS One. 2020 Nov 17;15(11):e0242197. doi: 10.1371/journal.pone.0242197. eCollection 2020.

Abstract

The use of mobile communication devices in health care is spreading worldwide. A huge amount of health data collected by these devices (mobile health data) is nowadays available. Mobile health data may allow for real-time monitoring of patients and delivering ad-hoc treatment recommendations. This paper aims at showing how this may be done by exploiting the potentialities of fuzzy clustering techniques. In fact, such techniques can be fruitfully applied to mobile health data in order to identify clusters of patients for diagnostic classification and cluster-specific therapies. However, since mobile health data are full of noise, fuzzy clustering methods cannot be directly applied to mobile health data. Such data must be denoised prior to analyzing them. When longitudinal mobile health data are available, functional data analysis represents a powerful tool for filtering out the noise in the data. Fuzzy clustering methods for functional data can then be used to determine groups of patients. In this work we develop a fuzzy clustering method, based on the concept of medoid, for functional data and we apply it to longitudinal mHealth data on daily symptoms and consumptions of anti-symptomatic drugs collected by two sets of patients in Berlin (Germany) and Ascoli Piceno (Italy) suffering from allergic rhinoconjunctivitis. The studies showed that clusters of patients with similar changes in symptoms were identified opening the possibility of precision medicine.

摘要

移动通讯设备在医疗保健领域的应用正在全球范围内普及。这些设备所收集的大量健康数据(移动健康数据)如今已经可用。移动健康数据可以实现对患者的实时监测和提供临时的治疗建议。本文旨在展示如何通过利用模糊聚类技术的潜力来实现这一点。实际上,这些技术可以成功地应用于移动健康数据,以识别用于诊断分类和特定于集群的治疗的患者集群。但是,由于移动健康数据充满了噪声,因此不能直接将模糊聚类方法应用于移动健康数据。在对其进行分析之前,必须对这些数据进行去噪。当存在纵向移动健康数据时,功能数据分析代表了一种从数据中滤除噪声的强大工具。然后,可以使用针对功能数据的模糊聚类方法来确定患者群体。在这项工作中,我们开发了一种基于中值概念的功能数据模糊聚类方法,并将其应用于由两组在德国柏林和意大利阿斯科利皮切诺患有过敏性鼻结膜炎的患者收集的日常症状和抗症状药物消耗的纵向 mHealth 数据。研究表明,识别出了具有相似症状变化的患者群,从而为精准医学开辟了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd3e/7671550/204ecb75850c/pone.0242197.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验