Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan.
NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan.
PLoS One. 2020 Nov 17;15(11):e0242070. doi: 10.1371/journal.pone.0242070. eCollection 2020.
Enterococcus mundtii QU25, a non-dairy lactic acid bacterium of the phylum Firmicutes, is capable of simultaneously fermenting cellobiose and xylose, and is described as a promising strain for the industrial production of optically pure l-lactic acid (≥ 99.9%) via homo-fermentation of lignocellulosic hydrolysates. Generally, Firmicutes bacteria show preferential consumption of sugar (usually glucose), termed carbon catabolite repression (CCR), while hampering the catabolism of other sugars. In our previous study, QU25 exhibited apparent CCR in a glucose-xylose mixture phenotypically, and transcriptional repression of the xylose operon encoding initial xylose metabolism genes, likely occurred in a CcpA-dependent manner. QU25 did not exhibit CCR phenotypically in a cellobiose-xylose mixture. The aim of the current study is to elucidate the transcriptional change associated with the simultaneous utilization of cellobiose and xylose. To this end, we performed RNA-seq analysis in the exponential growth phase of E. mundtii QU25 cells grown in glucose, cellobiose, and/or xylose as either sole or co-carbon sources. Our transcriptomic data showed that the xylose operon was weakly repressed in cells grown in a cellobiose-xylose mixture compared with that in cells grown in a glucose-xylose mixture. Furthermore, the gene expression of talC, the sole gene encoding transaldolase, is expected to be repressed by CcpA-mediated CCR. QU25 metabolized xylose without using transaldolase, which is necessary for homolactic fermentation from pentoses using the pentose-phosphate pathway. Hence, the metabolism of xylose in the presence of cellobiose by QU25 may have been due to 1) sufficient amounts of proteins encoded by the xylose operon genes for xylose metabolism despite of the slight repression of the operon, and 2) bypassing of the pentose-phosphate pathway without the TalC activity. Accordingly, we have determined the targets of genetic modification in QU25 to metabolize cellobiose, xylose and glucose simultaneously for application of the lactic fermentation from lignocellulosic hydrolysates.
肠球菌 mundtii QU25 是厚壁菌门的一种非乳制品乳酸菌,能够同时发酵纤维二糖和木糖,被描述为通过木质纤维素水解物的同型发酵生产光学纯 L-乳酸(≥99.9%)的有前途的菌株。通常,Firmicutes 细菌优先消耗糖(通常是葡萄糖),称为碳分解代谢物阻遏(CCR),同时阻碍其他糖的分解代谢。在我们之前的研究中,QU25 在葡萄糖-木糖混合物中表现出明显的 CCR 表型,并且可能以 CcpA 依赖的方式转录抑制编码初始木糖代谢基因的木糖操纵子。QU25 在纤维二糖-木糖混合物中没有表现出 CCR 表型。本研究的目的是阐明与纤维二糖和木糖同时利用相关的转录变化。为此,我们在葡萄糖、纤维二糖和/或木糖作为唯一或共碳源生长的肠球菌 mundtii QU25 细胞的指数生长期进行了 RNA-seq 分析。我们的转录组数据表明,与在葡萄糖-木糖混合物中生长的细胞相比,在纤维二糖-木糖混合物中生长的细胞中,木糖操纵子受到较弱的抑制。此外,唯一编码转醛醇酶的 talC 基因的表达预计受到 CcpA 介导的 CCR 的抑制。QU25 在没有使用转醛醇酶的情况下代谢木糖,转醛醇酶是通过磷酸戊糖途径从戊糖进行同型乳酸发酵所必需的。因此,QU25 在存在纤维二糖的情况下代谢木糖可能是由于 1)尽管操纵子受到轻微抑制,但编码木糖代谢的基因编码的蛋白质数量充足,和 2)绕过磷酸戊糖途径而不依赖 TalC 活性。因此,我们已经确定了 QU25 中遗传修饰的靶标,以同时代谢纤维二糖、木糖和葡萄糖,从而应用木质纤维素水解物的乳酸发酵。