Suppr超能文献

卷积神经网络结合 X 射线相衬成像,实现快速、无需观察者的软骨和肝脏疾病阶段分类。

Convolutional neuronal networks combined with X-ray phase-contrast imaging for a fast and observer-independent discrimination of cartilage and liver diseases stages.

机构信息

Faculty of Physics, Ludwig Maximilians University, Schellingstr. 4, 80799, München, Germany.

Faculty of Medicine, Department of Radiology, Ludwig Maximilians University, Marchioninistraße 15, 81377, München, Germany.

出版信息

Sci Rep. 2020 Nov 17;10(1):20007. doi: 10.1038/s41598-020-76937-y.

Abstract

We applied transfer learning using Convolutional Neuronal Networks to high resolution X-ray phase contrast computed tomography datasets and tested the potential of the systems to accurately classify Computed Tomography images of different stages of two diseases, i.e. osteoarthritis and liver fibrosis. The purpose is to identify a time-effective and observer-independent methodology to identify pathological conditions. Propagation-based X-ray phase contrast imaging WAS used with polychromatic X-rays to obtain a 3D visualization of 4 human cartilage plugs and 6 rat liver samples with a voxel size of 0.7 × 0.7 × 0.7 µm and 2.2 × 2.2 × 2.2 µm, respectively. Images with a size of 224 × 224 pixels are used to train three pre-trained convolutional neuronal networks for data classification, which are the VGG16, the Inception V3, and the Xception networks. We evaluated the performance of the three systems in terms of classification accuracy and studied the effect of the variation of the number of inputs, training images and of iterations. The VGG16 network provides the highest classification accuracy when the training and the validation-test of the network are performed using data from the same samples for both the cartilage (99.8%) and the liver (95.5%) datasets. The Inception V3 and Xception networks achieve an accuracy of 84.7% (43.1%) and of 72.6% (53.7%), respectively, for the cartilage (liver) images. By using data from different samples for the training and validation-test processes, the Xception network provided the highest test accuracy for the cartilage dataset (75.7%), while for the liver dataset the VGG16 network gave the best results (75.4%). By using convolutional neuronal networks we show that it is possible to classify large datasets of biomedical images in less than 25 min on a 8 CPU processor machine providing a precise, robust, fast and observer-independent method for the discrimination/classification of different stages of osteoarthritis and liver diseases.

摘要

我们将迁移学习应用于高分辨率 X 射线相衬计算机断层扫描数据集,并测试了系统准确分类两种疾病(即骨关节炎和肝纤维化)不同阶段计算机断层扫描图像的潜力。目的是确定一种及时且观察者独立的方法来识别病理状况。我们使用基于传播的 X 射线相衬成像技术,用多色 X 射线对 4 个人类软骨插件和 6 个大鼠肝样本进行了 3D 可视化,体素大小分别为 0.7 × 0.7 × 0.7 µm 和 2.2 × 2.2 × 2.2 µm。我们使用大小为 224 × 224 像素的图像来训练三个用于数据分类的预训练卷积神经元网络,分别是 VGG16、Inception V3 和 Xception 网络。我们根据分类准确率评估了三个系统的性能,并研究了输入数量、训练图像和迭代次数的变化的影响。当使用来自同一样本的数据集对网络进行训练和验证测试时,VGG16 网络提供了最高的分类准确率,分别为软骨(99.8%)和肝脏(95.5%)数据集。Inception V3 和 Xception 网络分别实现了软骨(肝脏)图像的 84.7%(43.1%)和 72.6%(53.7%)的准确率。通过在训练和验证测试过程中使用来自不同样本的数据,Xception 网络为软骨数据集提供了最高的测试准确率(75.7%),而对于肝脏数据集,VGG16 网络给出了最佳结果(75.4%)。通过使用卷积神经元网络,我们表明可以在 8 核 CPU 处理器机器上不到 25 分钟的时间内对大型生物医学图像数据集进行分类,为骨关节炎和肝病的不同阶段的鉴别/分类提供了一种精确、鲁棒、快速且观察者独立的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be2/7673137/c6f008311359/41598_2020_76937_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验