Suppr超能文献

人工智能技术在1型糖尿病患者基础胰岛素估算中的应用。

Application of Artificial Intelligence Techniques for the Estimation of Basal Insulin in Patients with Type I Diabetes.

作者信息

Guzman Gómez Guillermo Edinson, Burbano Agredo Luis Eduardo, Martínez Veline, Bedoya Leiva Oscar Fernando

机构信息

Fundación Valle del Lili, Departamento de Endocrinología, Cali, Colombia.

Universidad Icesi, Facultad de Ciencias de la Salud, Cali, Colombia.

出版信息

Int J Endocrinol. 2020 Nov 3;2020:7326073. doi: 10.1155/2020/7326073. eCollection 2020.

Abstract

Artificial intelligence techniques have been positioned in the resolution of problems in various areas of healthcare. Clinical decision support systems developed from this technology have optimized the healthcare of patients with chronic diseases through mobile applications. In this study, several models based on this methodology have been developed to calculate the basal insulin dose in patients with type I diabetes using subcutaneous insulin infusion pumps. . A pilot experimental study was performed with data from 56 patients with type 1 diabetes who used insulin infusion pumps and underwent continuous glucose monitoring. Several models based on artificial intelligence techniques were developed to analyze glycemic patterns based on continuous glucose monitoring and clinical variables in order to estimate the basal insulin dose. We used neural networks (NNs), Bayesian networks (BNs), support vector machines (SVMs), and random forests (RF). We then evaluated the agreement between predicted and actual values using several statistical error measurements: mean absolute error (MAE), mean square error (MSE), root-mean-square error (RMSE), Pearson's correlation coefficient (), and determination coefficient ( ). . Twenty-four different models were obtained, one for each hour of the day, with each chosen technique. Correlation coefficients obtained with RF, SVMs, NNs, and BNs were 0.9999, 0.9921, 0.0303, and 0.7754, respectively. The error increased between 06:00 and 07:00 and between 13:00 and 17:00. . The performance of the RF technique was excellent and got very close to the actual values. Intelligence techniques could be used to predict basal insulin dose. However, it is necessary to explore the validity of the results and select the target population. Models that allow for more accurate levels of prediction should be further explored.

摘要

人工智能技术已被应用于解决医疗保健各个领域的问题。基于该技术开发的临床决策支持系统通过移动应用程序优化了慢性病患者的医疗保健。在本研究中,已经开发了几种基于这种方法的模型,用于使用皮下胰岛素输注泵计算1型糖尿病患者的基础胰岛素剂量。对56名使用胰岛素输注泵并进行连续血糖监测的1型糖尿病患者的数据进行了一项试点实验研究。开发了几种基于人工智能技术的模型,以根据连续血糖监测和临床变量分析血糖模式,从而估计基础胰岛素剂量。我们使用了神经网络(NNs)、贝叶斯网络(BNs)、支持向量机(SVMs)和随机森林(RF)。然后,我们使用几种统计误差测量方法评估预测值与实际值之间的一致性:平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、皮尔逊相关系数()和决定系数()。使用每种选定技术获得了24种不同的模型,对应一天中的每一小时。RF、SVMs、NNs和BNs获得的相关系数分别为0.9999、0.9921、0.0303和0.7754。误差在06:00至07:00之间以及13:00至17:00之间有所增加。RF技术的性能非常出色,非常接近实际值。智能技术可用于预测基础胰岛素剂量。然而有必要探索结果的有效性并选择目标人群。应进一步探索能够实现更准确预测水平的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e57/7655245/a93669241824/IJE2020-7326073.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验