Suppr超能文献

利用患者健康记录来量化与药物相关的致心律失常风险。

Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk.

机构信息

QT-Informatics Ltd., Macclesfield, UK.

PHC Data Science, Personalized Healthcare, Product Development, F. Hoffmann-La Roche AG, Basel, Switzerland.

出版信息

Cell Rep Med. 2020 Aug 25;1(5):100076. doi: 10.1016/j.xcrm.2020.100076.

Abstract

There is an increasing expectation that computational approaches may supplement existing human decision-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing regulatory initiatives propose use of high-throughput data combined with computational models for calculating proarrhythmic risk. Evaluation of these models requires robust assessment of the outcomes. Using FDA Adverse Event Reporting System reports and electronic healthcare claims data from the Truven-MarketScan US claims database, we quantify the incidence rate of arrhythmia in patients and how this changes depending on patient characteristics. First, we propose that such datasets are a complementary resource for determining relative drug risk and assessing the performance of cardiac safety models for regulatory use. Second, the results suggest important determinants for appropriate stratification of patients and evaluation of additional drug risk in prescribing and clinical support algorithms and for precision health.

摘要

人们越来越期望计算方法可以补充现有的人类决策。心脏安全性预测模型的前置也不例外,正在进行的监管举措建议使用高通量数据和计算模型来计算致心律失常风险。这些模型的评估需要对结果进行稳健的评估。我们使用 FDA 不良事件报告系统报告和来自 Truven-MarketScan 美国索赔数据库的电子医疗保健索赔数据,量化了心律失常在患者中的发生率,以及这种发生率如何根据患者特征而变化。首先,我们提出这样的数据集是确定相对药物风险和评估心脏安全性模型在监管使用中的性能的补充资源。其次,结果表明对于适当分层患者以及评估处方和临床支持算法中的额外药物风险和精准医疗而言,有一些重要的决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e7/7659582/05714c620309/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验