QT-Informatics Ltd., Macclesfield, UK.
PHC Data Science, Personalized Healthcare, Product Development, F. Hoffmann-La Roche AG, Basel, Switzerland.
Cell Rep Med. 2020 Aug 25;1(5):100076. doi: 10.1016/j.xcrm.2020.100076.
There is an increasing expectation that computational approaches may supplement existing human decision-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing regulatory initiatives propose use of high-throughput data combined with computational models for calculating proarrhythmic risk. Evaluation of these models requires robust assessment of the outcomes. Using FDA Adverse Event Reporting System reports and electronic healthcare claims data from the Truven-MarketScan US claims database, we quantify the incidence rate of arrhythmia in patients and how this changes depending on patient characteristics. First, we propose that such datasets are a complementary resource for determining relative drug risk and assessing the performance of cardiac safety models for regulatory use. Second, the results suggest important determinants for appropriate stratification of patients and evaluation of additional drug risk in prescribing and clinical support algorithms and for precision health.
人们越来越期望计算方法可以补充现有的人类决策。心脏安全性预测模型的前置也不例外,正在进行的监管举措建议使用高通量数据和计算模型来计算致心律失常风险。这些模型的评估需要对结果进行稳健的评估。我们使用 FDA 不良事件报告系统报告和来自 Truven-MarketScan 美国索赔数据库的电子医疗保健索赔数据,量化了心律失常在患者中的发生率,以及这种发生率如何根据患者特征而变化。首先,我们提出这样的数据集是确定相对药物风险和评估心脏安全性模型在监管使用中的性能的补充资源。其次,结果表明对于适当分层患者以及评估处方和临床支持算法中的额外药物风险和精准医疗而言,有一些重要的决定因素。