Kamrujjaman Md, Shahriar Mahmud Md, Islam Md Shafiqul
Department of Mathematics, University of Dhaka, Dhaka, Bangladesh.
Department of Mathematics and Statistics, University of Calgary, Calgary, Canada.
J Biol Dyn. 2021 May;15(sup1):S105-S133. doi: 10.1080/17513758.2020.1849831. Epub 2020 Nov 18.
In this paper, we study a more general diffusive spatially dependent vaccination model for infectious disease. In our diffusive vaccination model, we consider both therapeutic impact and nonlinear incidence rate. Also, in this model, the number of compartments of susceptible, vaccinated and infectious individuals are considered to be functions of both time and location, where the set of locations (equivalently, spatial habitats) is a subset of with a smooth boundary. Both local and global stability of the model are studied. Our study shows that if the threshold level the disease-free equilibrium is globally asymptotically stable. On the other hand, if then there exists a unique stable disease equilibrium . The existence of solutions of the model and uniform persistence results are studied. Finally, using finite difference scheme, we present a number of numerical examples to verify our analytical results. Our results indicate that the global dynamics of the model are completely determined by the threshold value .
在本文中,我们研究了一个更一般的、具有空间依赖性的传染病扩散疫苗接种模型。在我们的扩散疫苗接种模型中,我们考虑了治疗效果和非线性发病率。此外,在这个模型中,易感个体、接种疫苗个体和感染个体的数量被视为时间和位置的函数,其中位置集(等价地,空间栖息地)是具有光滑边界的 的一个子集。我们研究了该模型的局部和全局稳定性。我们的研究表明,如果阈值水平 ,无病平衡点 是全局渐近稳定的。另一方面,如果 ,则存在唯一的稳定疾病平衡点 。我们研究了模型解的存在性和一致持续结果。最后,使用有限差分格式,我们给出了一些数值例子来验证我们的分析结果。我们的结果表明,模型的全局动态完全由阈值决定。