Han Hecheng, Zheng Huiling, Wang Qiushi, Yan Yu
College of Physical Science and Technology, Bohai University, Jinzhou 121013, China.
Phys Chem Chem Phys. 2020 Dec 7;22(46):26917-26922. doi: 10.1039/d0cp03803b.
Two-dimensional (2D) intrinsic ferromagnetic semiconductors with high magnetic anisotropy (MA) and Curie temperature (TC) are desirable for low-dimensional spintronic applications. We present here the structural stability, MA and TC of the semiconducting NiI2 monolayer under strain from -4% to 4% using first-principles calculations. The unstrained NiI2 monolayer exhibits an in-plane magnetic anisotropy energy of -0.11 meV per unit cell and a TC of 79 K. Most noteworthily, the in-plane MA and TC of the NiI2 monolayer are simultaneously enhanced under compressive strain; meanwhile, the NiI2 monolayer is still stable. In particular, when the compressive strain reaches -4%, the in-plane MA is more than three times higher than that in the unstrained system. Based on the second-order perturbation theory of spin-orbit coupling, the density of states and the orbital magnetic anisotropy contributions are analyzed, indicating that the compressive strain effect originates from the increase of the negative contribution from the spin-orbit coupling interaction between the opposite spin py and px orbitals of the I atom. This study provides a promising route for exploring new 2D ferromagnetic semiconductors with higher MA and TC.
具有高磁各向异性(MA)和居里温度(TC)的二维(2D)本征铁磁半导体对于低维自旋电子学应用来说是很理想的。我们在此使用第一性原理计算,给出了半导体NiI₂单层在-4%至4%应变下的结构稳定性、MA和TC。未受应变的NiI₂单层每晶胞表现出-0.11 meV的面内磁各向异性能量和79 K的TC。最值得注意的是,在压缩应变下,NiI₂单层的面内MA和TC同时增强;与此同时,NiI₂单层仍然稳定。特别是,当压缩应变达到-4%时,面内MA比未受应变系统中的高出三倍多。基于自旋轨道耦合的二阶微扰理论,分析了态密度和轨道磁各向异性贡献,表明压缩应变效应源于I原子相反自旋的py和px轨道之间自旋轨道耦合相互作用的负贡献增加。这项研究为探索具有更高MA和TC的新型二维铁磁半导体提供了一条有前景的途径。