Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, United States of America.
These authors have contributed equally.
Phys Med Biol. 2021 Feb 16;66(4):045035. doi: 10.1088/1361-6560/abcbcf.
Many surrogate-based motion models (SMMs), proposed to guide motion management in radiotherapy, are constructed by correlating motion of an external surrogate and internal anatomy during CT-simulation. Changes in this correlation define model break down. We validate a methodology that incorporates fluoroscopic (FL) images acquired during treatment for SMM construction and update. Under a prospective IRB, 4DCT scans, VisionRT (VRT) surfaces, and orthogonal FLs were collected from five lung cancer patients. VRT surfaces and two FL time-series were acquired pre- and post-treatment. A simulated annealing optimization scheme was used to estimate optimal lung deformations by maximizing the mutual information (MI) between digitally reconstructed radiographs (DRRs) of the SMM-estimated 3D images and FLs. Our SMM used partial-least-regression and was trained using the optimal deformations and VRT surfaces from the first breathing-cycle. SMM performance was evaluated using the MI score between reference FLs and the corresponding SMM or phase-assigned 4DCT DRRs. The Hausdorff distance for contoured landmarks was used to evaluate target position estimation error. For four out of five patients, two principal components approximated lung surface deformations with submillimeter accuracy. Analysis of the MI score between more than 4000 pairs of FL and DRR demonstrated that our model led to more similarity between the FL and DRR images compared to 4DCT and DRR images from a model based on an a priori correlation model. Our SMM consistently displayed lower mean and 95th percentile Hausdorff distances. For one patient, 95th percentile Hausdorff distance was reduced by 11 mm. Patient-averaged reductions in mean and 95th percentile Hausdorff distances were 3.6 mm and 7 mm for right-lung, and 3.1 mm and 4 mm for left-lung targets. FL data were used to evaluate model performance and investigate the feasibility of model update. Despite variability in breathing, use of post-treatment FL preserved model fidelity and consistently outperformed 4DCT for position estimation.
许多基于替代物的运动模型(SMM)被提出用于指导放射治疗中的运动管理,这些模型是通过在 CT 模拟期间关联外部替代物和内部解剖结构的运动来构建的。这种相关性的变化定义了模型的失效。我们验证了一种将治疗期间获取的荧光透视(FL)图像纳入 SMM 构建和更新的方法。在一项前瞻性 IRB 下,从五名肺癌患者中收集了 4DCT 扫描、VisionRT(VRT)表面和正交 FL。在治疗前后采集了 VRT 表面和两个 FL 时间序列。使用模拟退火优化方案通过最大化 SMM 估计的 3D 图像和 FL 之间的互信息(MI)来估计最佳的肺变形。我们的 SMM 使用偏最小二乘回归,并使用第一呼吸周期的最佳变形和 VRT 表面进行训练。使用 MI 评分评估参考 FL 和相应的 SMM 或相位分配的 4DCT DRR 之间的 SMM 性能。轮廓标志的 Hausdorff 距离用于评估目标位置估计误差。对于五名患者中的四名,两个主成分以亚毫米精度近似肺表面变形。对超过 4000 对 FL 和 DRR 的 MI 评分分析表明,与基于先验相关模型的模型相比,我们的模型使 FL 和 DRR 图像之间更相似。我们的 SMM 始终显示出较低的平均和 95 百分位 Hausdorff 距离。对于一名患者,95 百分位 Hausdorff 距离降低了 11 毫米。对于右肺,患者平均的平均和 95 百分位 Hausdorff 距离减少了 3.6 毫米和 7 毫米,对于左肺目标减少了 3.1 毫米和 4 毫米。FL 数据用于评估模型性能并研究模型更新的可行性。尽管呼吸存在变异性,但使用治疗后的 FL 保留了模型的保真度,并始终优于 4DCT 进行位置估计。