Department of Biomedical Data Science, Stanford University, Stanford, California, United States.
Department of Ophthalmology, Santa Clara Valley Medical Center, San Jose, California, United States.
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):590-596. doi: 10.1167/iovs.17-22721.
To develop an automated method of localizing and discerning multiple types of findings in retinal images using a limited set of training data without hard-coded feature extraction as a step toward generalizing these methods to rare disease detection in which a limited number of training data are available.
Two ophthalmologists verified 243 retinal images, labeling important subsections of the image to generate 1324 image patches containing either hemorrhages, microaneurysms, exudates, retinal neovascularization, or normal-appearing structures from the Kaggle dataset. These image patches were used to train one standard convolutional neural network to predict the presence of these five classes. A sliding window method was used to generate probability maps across the entire image.
The method was validated on the eOphta dataset of 148 whole retinal images for microaneurysms and 47 for exudates. A pixel-wise classification of the area under the curve of the receiver operating characteristic of 0.94 and 0.95, as well as a lesion-wise area under the precision recall curve of 0.86 and 0.64, was achieved for microaneurysms and exudates, respectively.
Regionally trained convolutional neural networks can generate lesion-specific probability maps able to detect and distinguish between subtle pathologic lesions with only a few hundred training examples per lesion.
开发一种自动化方法,使用有限的训练数据定位和辨别视网膜图像中的多种类型的发现,而无需作为将这些方法推广到罕见疾病检测的步骤进行硬编码特征提取,在罕见疾病检测中,可获得的训练数据数量有限。
两名眼科医生验证了 243 张视网膜图像,对图像的重要部分进行标记,以生成包含出血、微动脉瘤、渗出物、视网膜新生血管或来自 Kaggle 数据集的正常结构的 1324 个图像补丁。这些图像补丁用于训练一个标准卷积神经网络来预测这五类的存在。使用滑动窗口方法在整个图像上生成概率图。
该方法在 eOphta 数据集上对 148 张用于微动脉瘤的全视网膜图像和 47 张用于渗出物的全视网膜图像进行了验证。实现了微动脉瘤和渗出物的接收器操作特征曲线下的像素分类曲线的 AUC 为 0.94 和 0.95,以及病灶下的精度召回曲线的 AUC 为 0.86 和 0.64。
区域性训练的卷积神经网络可以生成特定于病变的概率图,能够检测和区分细微的病理病变,每个病变只需几百个训练示例。