Wang Yiming, Counihan Michael J, Lin Jeffrey Wayjer, Rodríguez-López Joaquín, Yang Hong, Lu Yi
J Am Chem Soc. 2020 Nov 18. doi: 10.1021/jacs.0c08604.
The predictive synthesis of metal nanocrystals with desired structures relies on the precise control of the crystal formation process. Using a capping ligand is an effective method to affect the reduction of metal ions and the formation of nanocrystals. However, predictively synthesizing nanostructures has been difficult to achieve using conventional capping ligands. DNA, as a class of the promising biomolecular capping ligands, has been used to generate sequence-specific morphologies in various metal nanocrystals. However, mechanistic insight into the DNA-mediated nanocrystal formation remains elusive due to the lack of quantitative experimental evidence. Herein, we quantitatively analyzed the precise control of DNA over Ag reduction and the structures of resulting Au-Ag core-shell nanocrystals. We derived the equilibrium binding constants between DNA and Ag, the kinetic rate constants of sequence-specific Ag reduction pathways, and the percentage of active surface sites remaining on the nanocrystals after DNA passivation. These three synergistic factors influence the nucleation and growth process both thermodynamically and kinetically, which contributed to the morphological evolution of Au-Ag nanocrystals synthesized with different DNA sequences. This study demonstrates the potential of using functional DNA sequences as a versatile and tunable capping ligand system for the predictable synthesis of metal nanostructures.
具有所需结构的金属纳米晶体的预测性合成依赖于对晶体形成过程的精确控制。使用封端配体是影响金属离子还原和纳米晶体形成的有效方法。然而,使用传统的封端配体很难实现纳米结构的预测性合成。DNA作为一类有前景的生物分子封端配体,已被用于在各种金属纳米晶体中产生序列特异性形态。然而,由于缺乏定量实验证据,对DNA介导的纳米晶体形成的机理认识仍然难以捉摸。在此,我们定量分析了DNA对Ag还原的精确控制以及所得Au-Ag核壳纳米晶体的结构。我们推导了DNA与Ag之间的平衡结合常数、序列特异性Ag还原途径的动力学速率常数,以及DNA钝化后纳米晶体上剩余的活性表面位点的百分比。这三个协同因素在热力学和动力学上影响成核和生长过程,这有助于用不同DNA序列合成的Au-Ag纳米晶体的形态演变。这项研究证明了使用功能性DNA序列作为通用且可调的封端配体系统用于金属纳米结构的可预测合成的潜力。