Suppr超能文献

受损皮质轴突的体内成像揭示了沃勒变性的快速发作形式。

In vivo imaging of injured cortical axons reveals a rapid onset form of Wallerian degeneration.

作者信息

Canty Alison Jane, Jackson Johanna Sara, Huang Lieven, Trabalza Antonio, Bass Cher, Little Graham, Tortora Maria, Khan Shabana, De Paola Vincenzo

机构信息

Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia.

Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.

出版信息

BMC Biol. 2020 Nov 18;18(1):170. doi: 10.1186/s12915-020-00869-2.

Abstract

BACKGROUND

Despite the widespread occurrence of axon and synaptic loss in the injured and diseased nervous system, the cellular and molecular mechanisms of these key degenerative processes remain incompletely understood. Wallerian degeneration (WD) is a tightly regulated form of axon loss after injury, which has been intensively studied in large myelinated fibre tracts of the spinal cord, optic nerve and peripheral nervous system (PNS). Fewer studies, however, have focused on WD in the complex neuronal circuits of the mammalian brain, and these were mainly based on conventional endpoint histological methods. Post-mortem analysis, however, cannot capture the exact sequence of events nor can it evaluate the influence of elaborated arborisation and synaptic architecture on the degeneration process, due to the non-synchronous and variable nature of WD across individual axons.

RESULTS

To gain a comprehensive picture of the spatiotemporal dynamics and synaptic mechanisms of WD in the nervous system, we identify the factors that regulate WD within the mouse cerebral cortex. We combined single-axon-resolution multiphoton imaging with laser microsurgery through a cranial window and a fluorescent membrane reporter. Longitudinal imaging of > 150 individually injured excitatory cortical axons revealed a threshold length below which injured axons consistently underwent a rapid-onset form of WD (roWD). roWD started on average 20 times earlier and was executed 3 times slower than WD described in other regions of the nervous system. Cortical axon WD and roWD were dependent on synaptic density, but independent of axon complexity. Finally, pharmacological and genetic manipulations showed that a nicotinamide adenine dinucleotide (NAD)-dependent pathway could delay cortical roWD independent of transcription in the damaged neurons, demonstrating further conservation of the molecular mechanisms controlling WD in different areas of the mammalian nervous system.

CONCLUSIONS

Our data illustrate how in vivo time-lapse imaging can provide new insights into the spatiotemporal dynamics and synaptic mechanisms of axon loss and assess therapeutic interventions in the injured mammalian brain.

摘要

背景

尽管轴突和突触丧失在受损和患病的神经系统中广泛存在,但这些关键退行性过程的细胞和分子机制仍未完全明了。华勒氏变性(WD)是损伤后轴突丧失的一种严格调控形式,已在脊髓、视神经和外周神经系统(PNS)的大型有髓纤维束中得到深入研究。然而,较少有研究关注哺乳动物大脑复杂神经回路中的WD,且这些研究主要基于传统的终点组织学方法。然而,死后分析无法捕捉事件的确切顺序,也无法评估精细的树突分支和突触结构对退变过程的影响,因为WD在各个轴突之间具有非同步性和变异性。

结果

为全面了解神经系统中WD的时空动态和突触机制,我们确定了小鼠大脑皮层内调控WD的因素。我们将单轴突分辨率多光子成像与通过颅骨窗口的激光显微手术及荧光膜报告基因相结合。对150多条单独损伤的兴奋性皮层轴突进行纵向成像显示,存在一个阈值长度,低于该长度时,受损轴突会持续经历快速发作形式的WD(roWD)。roWD平均比神经系统其他区域描述的WD早开始20倍,且执行速度慢3倍。皮层轴突WD和roWD依赖于突触密度,但与轴突复杂性无关。最后,药理学和遗传学操作表明,烟酰胺腺嘌呤二核苷酸(NAD)依赖性途径可独立于受损神经元中的转录来延迟皮层roWD,这进一步证明了哺乳动物神经系统不同区域控制WD的分子机制具有保守性。

结论

我们的数据说明了体内延时成像如何能为轴突丧失的时空动态和突触机制提供新见解,并评估对受损哺乳动物大脑的治疗干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d20/7677840/a1fa0b310be2/12915_2020_869_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验