Liu Lan, Miao Wang, Sun Baoluo, Robins James, Tchetgen Eric Tchetgen
School of Statistics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
School of Mathematical Sciences, Peking University, Beijing 100871, China.
Stat Sin. 2020 Jul;30(3):1517-1541. doi: 10.5705/ss.202017.0196.
In observational studies, treatments are typically not randomized and therefore estimated treatment effects may be subject to confounding bias. The instrumental variable (IV) design plays the role of a quasi-experimental handle since the IV is associated with the treatment and only affects the outcome through the treatment. In this paper, we present a novel framework for identification and inference using an IV for the marginal average treatment effect amongst the treated (ETT) in the presence of unmeasured confounding. For inference, we propose three different semiparametric approaches: (i) inverse probability weighting (IPW), (ii) outcome regression (OR), and (iii) doubly robust (DR) estimation, which is consistent if either (i) or (ii) is consistent, but not necessarily both. A closed-form locally semiparametric efficient estimator is obtained in the simple case of binary IV and outcome and the efficiency bound is derived for the more general case.
在观察性研究中,治疗通常不是随机分配的,因此估计的治疗效果可能会受到混杂偏倚的影响。工具变量(IV)设计起到了准实验手段的作用,因为工具变量与治疗相关,并且仅通过治疗影响结果。在本文中,我们提出了一个新颖的框架,用于在存在未测量混杂因素的情况下,使用工具变量识别和推断治疗组中的边际平均治疗效果(ETT)。对于推断,我们提出了三种不同的半参数方法:(i)逆概率加权(IPW),(ii)结果回归(OR),以及(iii)双重稳健(DR)估计,其中如果(i)或(ii)一致,则该估计是一致的,但不一定两者都一致。在二元工具变量和结果的简单情况下,获得了一个封闭形式的局部半参数有效估计量,并针对更一般的情况推导了效率界。