用于分类不可测混杂因素的双阴性对照调整的多重稳健因果推断

Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding.

作者信息

Shi Xu, Miao Wang, Nelson Jennifer C, Tchetgen Eric J Tchetgen

机构信息

University of Michigan, Ann Arbor, USA.

Peking University, Beijing, People's Republic of China.

出版信息

J R Stat Soc Series B Stat Methodol. 2020 Apr;82(2):521-540. doi: 10.1111/rssb.12361. Epub 2020 Jan 22.

Abstract

Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we propose multiply robust and locally efficient estimators when non-parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children.

摘要

未测量的混杂因素对观察性研究中的因果推断构成威胁。近年来,使用阴性对照来减轻未测量的混杂因素已得到越来越多的认可和应用。阴性对照在实验室科学和流行病学中有着长期的传统,用于排除非因果性解释,尽管它们主要用于偏差检测。最近,苗等人描述了充分条件,在这些条件下,一对阴性对照暴露和结局变量可用于从存在未控制混杂因素的观察性数据中以非参数方式识别平均治疗效果(ATE)。在分类未测量混杂因素和阴性对照变量的情况下,我们在更弱的条件下建立了ATE的非参数识别。我们还提供了一个通用的半参数框架,用于在利用大量测量协变量信息的同时获得关于ATE的推断。特别是,我们推导了非参数模型中的半参数效率界,并在非参数估计可能不可行时提出了多重稳健和局部有效的估计量。我们在广泛的模拟研究中评估了我们方法的有限样本性能。最后,我们通过应用于儿童疫苗安全性的上市后监测来说明我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索