Suppr超能文献

用于分类不可测混杂因素的双阴性对照调整的多重稳健因果推断

Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding.

作者信息

Shi Xu, Miao Wang, Nelson Jennifer C, Tchetgen Eric J Tchetgen

机构信息

University of Michigan, Ann Arbor, USA.

Peking University, Beijing, People's Republic of China.

出版信息

J R Stat Soc Series B Stat Methodol. 2020 Apr;82(2):521-540. doi: 10.1111/rssb.12361. Epub 2020 Jan 22.

Abstract

Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long-standing tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non-parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non-parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non-parametric model, and we propose multiply robust and locally efficient estimators when non-parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post-licensure surveillance of vaccine safety among children.

摘要

未测量的混杂因素对观察性研究中的因果推断构成威胁。近年来,使用阴性对照来减轻未测量的混杂因素已得到越来越多的认可和应用。阴性对照在实验室科学和流行病学中有着长期的传统,用于排除非因果性解释,尽管它们主要用于偏差检测。最近,苗等人描述了充分条件,在这些条件下,一对阴性对照暴露和结局变量可用于从存在未控制混杂因素的观察性数据中以非参数方式识别平均治疗效果(ATE)。在分类未测量混杂因素和阴性对照变量的情况下,我们在更弱的条件下建立了ATE的非参数识别。我们还提供了一个通用的半参数框架,用于在利用大量测量协变量信息的同时获得关于ATE的推断。特别是,我们推导了非参数模型中的半参数效率界,并在非参数估计可能不可行时提出了多重稳健和局部有效的估计量。我们在广泛的模拟研究中评估了我们方法的有限样本性能。最后,我们通过应用于儿童疫苗安全性的上市后监测来说明我们的方法。

相似文献

1
Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding.
J R Stat Soc Series B Stat Methodol. 2020 Apr;82(2):521-540. doi: 10.1111/rssb.12361. Epub 2020 Jan 22.
2
Identification and estimation of causal peer effects using double negative controls for unmeasured network confounding.
J R Stat Soc Series B Stat Methodol. 2023 Dec 15;86(2):487-511. doi: 10.1093/jrsssb/qkad132. eCollection 2024 Apr.
3
Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables.
J R Stat Soc Series B Stat Methodol. 2018 Jun;80(3):531-550. doi: 10.1111/rssb.12262. Epub 2017 Dec 18.
4
On semiparametric estimation of a path-specific effect in the presence of mediator-outcome confounding.
Biometrika. 2020 Mar;107(1):159-172. doi: 10.1093/biomet/asz063. Epub 2019 Nov 23.
5
Sensitivity analysis of unmeasured confounding in causal inference based on exponential tilting and super learner.
J Appl Stat. 2021 Nov 10;50(3):744-760. doi: 10.1080/02664763.2021.1999398. eCollection 2023.
6
Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.
Int J Epidemiol. 2017 Aug 1;46(4):1303-1311. doi: 10.1093/ije/dyx023.
8
Ensuring valid inference for Cox hazard ratios after variable selection.
Biometrics. 2023 Dec;79(4):3096-3110. doi: 10.1111/biom.13889. Epub 2023 Jun 22.
10
Instrumented difference-in-differences.
Biometrics. 2023 Jun;79(2):569-581. doi: 10.1111/biom.13783. Epub 2022 Nov 9.

引用本文的文献

1
Estimating cardiovascular effects of influenza vaccination in older adults: a target trial emulation using proximal causal inference.
EClinicalMedicine. 2025 Aug 21;87:103449. doi: 10.1016/j.eclinm.2025.103449. eCollection 2025 Sep.
2
Role of placebo samples in observational studies.
J Causal Inference. 2025 Jan;13(1). doi: 10.1515/jci-2023-0020. Epub 2025 Mar 5.
5
Double Negative Control Inference in Test-Negative Design Studies of Vaccine Effectiveness.
J Am Stat Assoc. 2024;119(547):1859-1870. doi: 10.1080/01621459.2023.2220935. Epub 2023 Jul 10.
6
Sensitivity to Unobserved Confounding in Studies with Factor-structured Outcomes.
J Am Stat Assoc. 2024;119(547):2026-2037. doi: 10.1080/01621459.2023.2240053. Epub 2023 Sep 25.
9
A framework for understanding selection bias in real-world healthcare data.
J R Stat Soc Ser A Stat Soc. 2024 May 2;187(3):606-635. doi: 10.1093/jrsssa/qnae039. eCollection 2024 Aug.
10
Doubly Robust Causal Modeling to Evaluate Device Implantation.
JAMA Intern Med. 2024 Jul 1;184(7):834-835. doi: 10.1001/jamainternmed.2024.1181.

本文引用的文献

1
Identifying Causal Effects With Proxy Variables of an Unmeasured Confounder.
Biometrika. 2018 Dec;105(4):987-993. doi: 10.1093/biomet/asy038. Epub 2018 Aug 13.
2
CONFOUNDER ADJUSTMENT IN MULTIPLE HYPOTHESIS TESTING.
Ann Stat. 2017 Oct;45(5):1863-1894. doi: 10.1214/16-AOS1511. Epub 2017 Oct 31.
3
Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables.
J R Stat Soc Series B Stat Methodol. 2018 Jun;80(3):531-550. doi: 10.1111/rssb.12262. Epub 2017 Dec 18.
6
On negative outcome control of unobserved confounding as a generalization of difference-in-differences.
Stat Sci. 2016;31(3):348-361. doi: 10.1214/16-STS558. Epub 2016 Sep 27.
8
The control outcome calibration approach for causal inference with unobserved confounding.
Am J Epidemiol. 2014 Mar 1;179(5):633-40. doi: 10.1093/aje/kwt303. Epub 2013 Dec 20.
9
Interpreting observational studies: why empirical calibration is needed to correct p-values.
Stat Med. 2014 Jan 30;33(2):209-18. doi: 10.1002/sim.5925. Epub 2013 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验