Nass Karol, Cheng Robert, Vera Laura, Mozzanica Aldo, Redford Sophie, Ozerov Dmitry, Basu Shibom, James Daniel, Knopp Gregor, Cirelli Claudio, Martiel Isabelle, Casadei Cecilia, Weinert Tobias, Nogly Przemyslaw, Skopintsev Petr, Usov Ivan, Leonarski Filip, Geng Tian, Rappas Mathieu, Doré Andrew S, Cooke Robert, Nasrollahi Shirazi Shahrooz, Dworkowski Florian, Sharpe May, Olieric Natacha, Bacellar Camila, Bohinc Rok, Steinmetz Michel O, Schertler Gebhard, Abela Rafael, Patthey Luc, Schmitt Bernd, Hennig Michael, Standfuss Jörg, Wang Meitian, Milne Christopher J
Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland.
LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland.
IUCrJ. 2020 Sep 9;7(Pt 6):965-975. doi: 10.1107/S2052252520011379. eCollection 2020 Nov 1.
Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.
来自瑞士X射线自由电子激光(XFEL)的长波长脉冲已被用于通过串行飞秒晶体学(SFX)数据的原生单波长反常衍射(native-SAD)相位分析来确定蛋白质结构。在这项工作中,使用了灵敏的反常数据质量指标和模型蛋白来量化XFEL上原生-SAD的改进,例如更长波长的利用、仔细的实验几何优化以及更好的精修后处理和占有率校正。与在其他XFEL上使用较短波长和旧软件版本的研究相比,原生-SAD所需的索引图像数量减少了一个数量级,从而显著降低了样品消耗和束流时间要求。改进的数据质量和更高的反常信号有助于在XFEL上对具有挑战性的蛋白质进行迄今未充分利用的结构测定。这项工作中提出的改进可用于其他需要精确测量微弱信号的SFX实验类型,例如时间分辨研究。