Ren Zhong, Wang Cong, Shin Heewhan, Bandara Sepalika, Kumarapperuma Indika, Ren Michael Y, Kang Weijia, Yang Xiaojing
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL 60607, USA.
Renz Research, Inc., Westmont, IL 60559, USA.
IUCrJ. 2020 Sep 19;7(Pt 6):1009-1018. doi: 10.1107/S2052252520011288. eCollection 2020 Nov 1.
Direct observation of functional motions in protein structures is highly desirable for understanding how these nanomachineries of life operate at the molecular level. Because cryogenic temperatures are non-physiological and may prohibit or even alter protein structural dynamics, it is necessary to develop robust X-ray diffraction methods that enable routine data collection at room temperature. We recently reported a crystal-on-crystal device to facilitate diffraction of protein crystals at room temperature devoid of any sample manipulation. Here an automated serial crystallography platform based on this crystal-on-crystal technology is presented. A hardware and software prototype has been implemented, and protocols have been established that allow users to image, recognize and rank hundreds to thousands of protein crystals grown on a chip in optical scanning mode prior to serial introduction of these crystals to an X-ray beam in a programmable and high-throughput manner. This platform has been tested extensively using fragile protein crystals. We demonstrate that with affordable sample consumption, this serial crystallography technology could give rise to room-temperature protein structures of higher resolution and superior map quality for those protein crystals that encounter difficulties during freezing. This serial data collection platform is compatible with both monochromatic oscillation and Laue methods for X-ray diffraction and presents a widely applicable approach for static and dynamic crystallographic studies at room temperature.
直接观察蛋白质结构中的功能运动对于理解这些生命的纳米机器如何在分子水平上运作非常有必要。由于低温是非生理的,可能会阻止甚至改变蛋白质的结构动力学,因此有必要开发强大的X射线衍射方法,以便在室温下进行常规数据收集。我们最近报道了一种晶体对晶体装置,以促进蛋白质晶体在室温下的衍射,而无需任何样品操作。本文介绍了一种基于这种晶体对晶体技术的自动化连续晶体学平台。已经实现了硬件和软件原型,并建立了协议,允许用户在以可编程和高通量方式将这些晶体串行引入X射线束之前,以光学扫描模式对芯片上生长的数百到数千个蛋白质晶体进行成像、识别和排序。该平台已使用易碎蛋白质晶体进行了广泛测试。我们证明,通过合理的样品消耗,这种连续晶体学技术可以为那些在冷冻过程中遇到困难的蛋白质晶体产生更高分辨率和更好图谱质量的室温蛋白质结构。这个连续数据收集平台与用于X射线衍射的单色振荡和劳厄方法都兼容,并为室温下的静态和动态晶体学研究提供了一种广泛适用的方法。