Lieske Julia, Cerv Maximilian, Kreida Stefan, Komadina Dana, Fischer Janine, Barthelmess Miriam, Fischer Pontus, Pakendorf Tim, Yefanov Oleksandr, Mariani Valerio, Seine Thomas, Ross Breyan H, Crosas Eva, Lorbeer Olga, Burkhardt Anja, Lane Thomas J, Guenther Sebastian, Bergtholdt Julian, Schoen Silvan, Törnroth-Horsefield Susanna, Chapman Henry N, Meents Alke
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
IUCrJ. 2019 Jun 19;6(Pt 4):714-728. doi: 10.1107/S2052252519007395. eCollection 2019 Jul 1.
Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, 'naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.
高效可靠的样品递送一直是串行晶体学实验的瓶颈之一。与其他方法相比,固定靶样品递送具有显著优势,由于命中率较高,可大幅减少样品消耗并缩短数据收集时间。在此,报道了一种新的芯片上结晶方法,该方法可在微图案化硅芯片上直接高效且可重复地生长大量蛋白质晶体,用于串行晶体学实验。晶体通过坐滴气相扩散法生长,先前建立的结晶条件可直接应用。通过减少晶体处理步骤,该方法特别适用于敏感晶体系统。通过吸干可有效地从晶体中去除过量母液,并且无需密封固定靶样品架以防止晶体脱水。结果,在芯片上获得了“裸露”的晶体,导致背景散射水平非常低,并使晶体易于进行外部操作,例如施加配体溶液。在同步加速器低温下和X射线自由电子激光室温下进行的串行衍射实验,得到了人类膜蛋白水通道蛋白2的高质量X射线结构以及嗜热菌蛋白酶和人类激酶DRAK2的两种新的配体结合结构。结果突出了该方法在未来药物化合物高通量芯片筛选中的适用性。