Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA.
Lab Chip. 2018 Jul 24;18(15):2246-2256. doi: 10.1039/c8lc00489g.
Recent developments in serial crystallography at X-ray free electron lasers (XFELs) and synchrotrons have been driven by two scientific goals in structural biology - first, static structure determination from nano or microcrystals of membrane proteins and large complexes that are difficult for conventional cryocrystallography, and second, direct observations of transient structural species in biochemical reactions at near atomic resolution. Since room-temperature diffraction experiments naturally demand a large quantity of purified protein, sample economy is critically important for all steps of serial crystallography from crystallization, crystal delivery to data collection. Here we report the development and applications of "crystal-on-crystal" devices to facilitate large-scale in situ serial diffraction experiments on protein crystals of all sizes - large, small, or microscopic. We show that the monocrystalline quartz as a substrate material prevents vapor loss during crystallization and significantly reduces background X-ray scattering. These devices can be readily adopted at XFEL and synchrotron beamlines, which enable efficient delivery of hundreds to millions of crystals to the X-ray beam, with an overall protein consumption per dataset comparable to that of cryocrystallography.
近年来,在 X 射线自由电子激光(XFEL)和同步加速器上的串行晶体学的发展受到结构生物学中两个科学目标的推动 - 首先,从膜蛋白和大复合物的纳米或微晶体中进行静态结构测定,这些晶体对于传统的 cryocrystallography 来说是困难的,其次,在接近原子分辨率的生化反应中直接观察瞬态结构物种。由于室温衍射实验自然需要大量纯化的蛋白质,因此对于从结晶、晶体传递到数据收集的串行晶体学的所有步骤来说,样品经济性至关重要。在这里,我们报告了“晶体对晶体”装置的开发和应用,以促进各种大小的蛋白质晶体的大规模原位串行衍射实验 - 大、小或微观。我们表明,作为基板材料的单晶石英可防止在结晶过程中蒸气损失,并显著降低背景 X 射线散射。这些设备可以在 XFEL 和同步加速器光束线上方便地采用,从而可以将数百到数百万个晶体有效地输送到 X 射线束中,每个数据集的总蛋白质消耗与 cryocrystallography 相当。