Assalauova Dameli, Kim Young Yong, Bobkov Sergey, Khubbutdinov Ruslan, Rose Max, Alvarez Roberto, Andreasson Jakob, Balaur Eugeniu, Contreras Alice, DeMirci Hasan, Gelisio Luca, Hajdu Janos, Hunter Mark S, Kurta Ruslan P, Li Haoyuan, McFadden Matthew, Nazari Reza, Schwander Peter, Teslyuk Anton, Walter Peter, Xavier P Lourdu, Yoon Chun Hong, Zaare Sahba, Ilyin Viacheslav A, Kirian Richard A, Hogue Brenda G, Aquila Andrew, Vartanyants Ivan A
Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany.
National Research Center 'Kurchatov Institute', Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation.
IUCrJ. 2020 Oct 15;7(Pt 6):1102-1113. doi: 10.1107/S2052252520012798. eCollection 2020 Nov 1.
An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.
本文提出了一种利用有限数据对单粒子成像(SPI)实验进行改进分析的方法。结果基于在直线加速器相干光源的原子、分子和光学科学仪器上对噬菌体PR772进行的一项研究,该研究是SPI计划的一部分。对现有方法进行了改进,以应对实验数据的缺点:探测器一半信息无法获取以及单光子击中事件的比例较小。通过基于期望最大化的衍射图案分类和最终病毒结构确定步骤中的模式分解,对通用SPI分析工作流程进行了升级。所提出的处理流程使我们能够在无对称性约束的情况下确定噬菌体PR772的三维结构,空间分辨率为6.9 nm。所获得的分辨率受实验期间的散射强度和相对较少的单光子击中事件数量的限制。