Suppr超能文献

利用卷积神经网络提高冷冻电镜图像的信噪比并生成对比度。

Enhancing the signal-to-noise ratio and generating contrast for cryo-EM images with convolutional neural networks.

作者信息

Palovcak Eugene, Asarnow Daniel, Campbell Melody G, Yu Zanlin, Cheng Yifan

机构信息

Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA.

Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94132, USA.

出版信息

IUCrJ. 2020 Oct 24;7(Pt 6):1142-1150. doi: 10.1107/S2052252520013184. eCollection 2020 Nov 1.

Abstract

In cryogenic electron microscopy (cryo-EM) of radiation-sensitive biological samples, both the signal-to-noise ratio (SNR) and the contrast of images are critically important in the image-processing pipeline. Classic methods improve low-frequency image contrast experimentally, by imaging with high defocus, or computationally, by applying various types of low-pass filter. These contrast improvements typically come at the expense of the high-frequency SNR, which is suppressed by high-defocus imaging and removed by low-pass filtration. Recently, convolutional neural networks (CNNs) trained to denoise cryo-EM images have produced impressive gains in image contrast, but it is not clear how these algorithms affect the information content of the image. Here, a denoising CNN for cryo-EM images was implemented and a quantitative evaluation of SNR enhancement, induced bias and the effects of denoising on image processing and three-dimensional reconstructions was performed. The study suggests that besides improving the visual contrast of cryo-EM images, the enhanced SNR of denoised images may be used in other parts of the image-processing pipeline, such as classification and 3D alignment. These results lay the groundwork for the use of denoising CNNs in the cryo-EM image-processing pipeline beyond particle picking.

摘要

在对辐射敏感的生物样品进行低温电子显微镜(cryo-EM)成像时,信噪比(SNR)和图像对比度在图像处理流程中都至关重要。传统方法通过高欠焦成像在实验上提高低频图像对比度,或者通过应用各种类型的低通滤波器在计算上提高对比度。这些对比度的提高通常是以高频信噪比为代价的,高频信噪比会因高欠焦成像而受到抑制,并通过低通滤波被去除。最近,经过训练用于对低温电子显微镜图像进行去噪的卷积神经网络(CNN)在图像对比度方面取得了令人瞩目的提升,但尚不清楚这些算法如何影响图像的信息内容。在此,实现了一种用于低温电子显微镜图像的去噪CNN,并对信噪比增强、诱导偏差以及去噪对图像处理和三维重建的影响进行了定量评估。该研究表明,除了改善低温电子显微镜图像的视觉对比度外,去噪图像增强的信噪比还可用于图像处理流程的其他部分,如分类和三维对齐。这些结果为在低温电子显微镜图像处理流程中除颗粒挑选之外使用去噪CNN奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2617/7642784/cc7291c7a0de/m-07-01142-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验