Suppr超能文献

AAA+ATP酶Thorase的冷冻电镜结构揭示了新型螺旋丝的形成。

Cryo-EM Structure of AAA + ATPase Thorase Reveals Novel Helical Filament Formation.

作者信息

Dar Mohamad Aasif, Louder Robert, Cortes Marisol, Chen Rong, Ma Qianqian, Chakrabarti Mayukh, Umanah George K E, Dawson Ted M, Dawson Valina L

机构信息

Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.

Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.

出版信息

bioRxiv. 2024 Nov 22:2024.11.22.624887. doi: 10.1101/2024.11.22.624887.

Abstract

The AAA+ (ATPases associated with a variety of cellular activities) ATPase, Thorase, also known as ATAD1, plays multiple roles in synaptic plasticity, mitochondrial quality control and mTOR signaling through disassembling protein complexes like AMPAR and mTORC1 in an ATP-dependent manner. The Oligomerization of Thorase is crucial for its disassembly and remodeling functions. We show that wild-type Thorase forms long helical filaments , dependent on ATP binding but not hydrolysis. We report the Cryogenic Electron Microscopy (cryo-EM) structure of the Thorase filament at a resolution of 4 Å, revealing the dimeric arrangement of the basic repeating unit that is formed through a distinct interface compared to the hexameric MSP1/ATAD1E193Q assembly. Structure-guided mutagenesis confirms the role of critical amino acid residues required for filament formation, oligomerization and disassembly of mTORC1 protein complex. Together, our data reveals a novel filament structure of Thorase and provides critical information that elucidates the mechanism underlying Thorase filament formation and Thorase-mediated disassembly of the mTORC1 complex.

摘要

AAA+(与多种细胞活动相关的ATP酶)ATP酶Thorase,也称为ATAD1,通过以ATP依赖的方式拆解诸如AMPAR和mTORC1等蛋白质复合物,在突触可塑性、线粒体质量控制和mTOR信号传导中发挥多种作用。Thorase的寡聚化对其拆解和重塑功能至关重要。我们发现野生型Thorase形成长螺旋丝,这依赖于ATP结合而非水解。我们报告了分辨率为4 Å的Thorase丝的低温电子显微镜(cryo-EM)结构,揭示了基本重复单元的二聚体排列,该排列通过与六聚体MSP1/ATAD1E193Q组装体不同的界面形成。结构导向的诱变证实了mTORC1蛋白复合物形成丝、寡聚化和解体所需的关键氨基酸残基的作用。总之,我们的数据揭示了Thorase的一种新型丝结构,并提供了关键信息,阐明了Thorase丝形成以及Thorase介导的mTORC1复合物拆解的潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19e/11601504/f4230d6ad389/nihpp-2024.11.22.624887v1-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验