Suppr超能文献

DIALAPP:一种新的急性阑尾炎诊断算法的前瞻性验证。

DIALAPP: a prospective validation of a new diagnostic algorithm for acute appendicitis.

机构信息

Department of General, Visceral and Transplant Surgery, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.

Department of General, Abdominal, Thoracic and Transplant Surgery, University Hospital of Giessen, Giessen, Germany.

出版信息

Langenbecks Arch Surg. 2021 Feb;406(1):141-152. doi: 10.1007/s00423-020-02022-7. Epub 2020 Nov 19.

Abstract

PURPOSE

The management of patients with suspected appendicitis remains a challenge in daily clinical practice, and the optimal management algorithm is still being debated. Negative appendectomy rates (NAR) continue to range between 10 and 15%. This prospective study evaluated the accuracy of a diagnostic pathway in acute appendicitis using clinical risk stratification (Alvarado score), routine ultrasonography, gynecology consult for females, and selected CT after clinical reassessment.

METHODS

Patients presenting with suspected appendicitis between November 2015 and September 2017 from age 18 years and above were included. Decision-making followed a clear management pathway. Patients were followed up for 6 months after discharge. The hypothesis was that the algorithm can reduce the NAR to a value of under 10%.

RESULTS

A total of 183 patients were included. In 65 of 69 appendectomies, acute appendicitis was confirmed by histopathology, corresponding to a NAR of 5.8%. Notably, all 4 NAR appendectomies had other pathologies of the appendix. The perforation rate was 24.6%. Only 36 patients (19.7%) received a CT scan. The follow-up rate after 30 days achieved 69%, including no patients with missed appendicitis. The sensitivity and specificity of the diagnostic pathway was 100% and 96.6%, respectively. The potential saving in costs can be as much as 19.8 million €/100,000 cases presenting with the suspicion of appendicitis.

CONCLUSION

The risk-stratified diagnostic algorithm yields a high diagnostic accuracy for patients with suspicion of appendicitis. Its implementation can safely reduce the NAR, simultaneously minimizing the use of CT scans and optimizing healthcare-related costs in the treatment of acute appendicitis.

TRIAL REGISTRATION

ClinicalTrials.gov Identifier: NCT02627781 (December 2015).

摘要

目的

在日常临床实践中,疑似阑尾炎患者的管理仍然是一个挑战,最佳的管理算法仍在争论中。阴性阑尾切除率(NAR)仍在 10%至 15%之间。本前瞻性研究使用临床风险分层(Alvarado 评分)、常规超声、女性妇科会诊和临床重新评估后选择的 CT,评估了急性阑尾炎诊断途径的准确性。

方法

纳入 2015 年 11 月至 2017 年 9 月期间年龄在 18 岁及以上的疑似阑尾炎患者。决策遵循明确的管理途径。患者在出院后随访 6 个月。假设该算法可以将 NAR 降低到 10%以下。

结果

共纳入 183 例患者。在 69 例阑尾切除术中,有 65 例经组织病理学证实为急性阑尾炎,NAR 为 5.8%。值得注意的是,所有 4 例 NAR 阑尾切除术均有阑尾的其他病理。穿孔率为 24.6%。仅 36 例(19.7%)患者接受了 CT 扫描。30 天后的随访率达到 69%,无漏诊阑尾炎患者。该诊断途径的敏感性和特异性分别为 100%和 96.6%。在怀疑阑尾炎的 100,000 例病例中,潜在的节省成本可达 1980 万欧元。

结论

分层风险诊断算法对疑似阑尾炎患者具有较高的诊断准确性。其实施可以安全地降低 NAR,同时最大限度地减少 CT 扫描的使用,并优化急性阑尾炎治疗中的医疗保健相关成本。

试验注册

ClinicalTrials.gov 标识符:NCT02627781(2015 年 12 月)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0a8/7870637/8fb44ded7095/423_2020_2022_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验