Saha-Chaudhuri Paramita, Juwara Lamin
Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont, USA.
Quantitative Life Sciences Program, McGill University, Montreal, Quebec, Canada.
Stat Med. 2021 Feb 20;40(4):998-1020. doi: 10.1002/sim.8816. Epub 2020 Nov 18.
For a continuous time-to-event outcome and an expensive-to-measure exposure, we develop a pooling design and propose a likelihood-based approach to estimate the hazard ratios (HRs) of a Cox proportional hazards (PH) model. Our proposed approach fits a PH model based on pooled exposures with individually observed time-to-event outcomes. The design and estimation exploits the equivalence of the conditional logistic likelihood functions arising from a matched case-control study and the partial likelihood function of a riskset-matched, nested case-control (NCC) subset of a cohort study. To create the pools, we first focus on an NCC subcohort. Pools are formed at random while keeping the matching intact. Pool-level exposure and confounders are then evaluated and used in the likelihood to estimate the HR and the standard error of the estimates. The estimators are MLEs, provide consistent estimates of the individual-level HRs, and are asymptotically normal. Our simulation results indicate that the pooled estimates are comparable to the estimates obtained from the NCC subcohort. The units of analysis for the pooled design are the pools and not the individual participants. Hence the effective sample size is reduced. Therefore, the variance of the HR estimate increases with increasing poolsize. However, this variance inflation in small samples can be offset by including more matched controls per case within the NCC subcohort. An application is demonstrated with the Second Manifestations of ARTerial disease (SMART) study.
对于连续的事件发生时间结局和测量成本高昂的暴露因素,我们开发了一种汇总设计,并提出了一种基于似然的方法来估计Cox比例风险(PH)模型的风险比(HR)。我们提出的方法基于汇总的暴露因素和个体观察到的事件发生时间结局来拟合PH模型。该设计和估计利用了匹配病例对照研究产生的条件逻辑似然函数与队列研究中风险集匹配的巢式病例对照(NCC)子集的部分似然函数的等价性。为了创建汇总组,我们首先关注一个NCC亚队列。在保持匹配完整的同时随机形成汇总组。然后评估汇总组水平的暴露因素和混杂因素,并将其用于似然估计中,以估计HR和估计值的标准误差。估计量是极大似然估计量,能提供个体水平HR的一致估计,并且渐近正态。我们的模拟结果表明,汇总估计与从NCC亚队列获得的估计相当。汇总设计的分析单位是汇总组而非个体参与者。因此有效样本量减少。所以,HR估计值的方差会随着汇总组规模的增加而增大。然而,在NCC亚队列中每个病例纳入更多匹配对照可以抵消小样本中的这种方差膨胀。通过动脉疾病的二次表现(SMART)研究展示了一个应用实例。