School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
School of Biological Sciences, The University of Auckland, 3 A Symonds St, Auckland, 1010, New Zealand.
Chembiochem. 2020 Dec 1;21(23):3301-3312. doi: 10.1002/cbic.202000347. Epub 2020 Jul 30.
Erythropoietin (EPO) has been regarded as a therapeutic glycoprotein for the clinical treatment of anaemia since its approval by the Food and Drug Administration (FDA) in 1989. Commercial production of the 165-residue glycoprotein is by recombinant protein expression using mammalian cell lines that renders a complex mixture of glycoforms that have an identical amino acid sequence but variations in the structures of the pendant glycans. This heterogeneous nature of human recombinant EPO restricts structural and bioactivity studies in medicinal chemistry. Consequently, chemical synthesis provides an elegant approach for the preparation of complex homogeneous glycoproteins from a readily accessible pool of amino acids and sugars. In addition, the combination of chemical and biosynthesis enables robust and large-scale production of homogeneous EPO. The scope of this minireview is to summarise the recent advances in the chemical and semisyntheses of homogeneous EPO glycoforms, highlighting the versatile approaches to the preparation and structural manipulations of the carbohydrate chains incorporated into synthetic EPO glycoproteins.
自 1989 年美国食品和药物管理局 (FDA) 批准以来,促红细胞生成素 (EPO) 一直被视为治疗贫血的治疗性糖蛋白。该 165 残基糖蛋白的商业生产是通过使用哺乳动物细胞系进行重组蛋白表达来实现的,这种方法会产生复杂的糖型混合物,它们具有相同的氨基酸序列,但侧链糖的结构存在差异。这种人重组 EPO 的异质性限制了药物化学中的结构和生物活性研究。因此,化学合成提供了一种从易于获得的氨基酸和糖池中制备复杂均一糖蛋白的优雅方法。此外,化学合成和生物合成的结合能够实现均一 EPO 的稳健和大规模生产。本文综述的范围是总结均一 EPO 糖型的化学和半合成的最新进展,重点介绍了制备和结构修饰方法,这些方法可以将碳水化合物链纳入到合成 EPO 糖蛋白中。