Conibear Anne C
School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
Nat Rev Chem. 2020 Dec;4(12):674-695. doi: 10.1038/s41570-020-00223-8. Epub 2020 Oct 6.
Proteins carry out a wide variety of catalytic, regulatory, signalling and structural functions in living systems. Following their assembly on ribosomes and throughout their lifetimes, most eukaryotic proteins are modified by post-translational modifications; small functional groups and complex biomolecules are conjugated to amino acid side chains or termini, and the protein backbone is cleaved, spliced or cyclized, to name just a few examples. These modifications modulate protein activity, structure, location and interactions, and, thereby, control many core biological processes. Aberrant post-translational modifications are markers of cellular stress or malfunction and are implicated in several diseases. Therefore, gaining an understanding of which proteins are modified, at which sites and the resulting biological consequences is an important but complex challenge requiring interdisciplinary approaches. One of the key challenges is accessing precisely modified proteins to assign functional consequences to specific modifications. Chemical biologists have developed a versatile set of tools for accessing specifically modified proteins by applying robust chemistries to biological molecules and developing strategies for synthesizing and ligating proteins. This Review provides an overview of these tools, with selected recent examples of how they have been applied to decipher the roles of a variety of protein post-translational modifications. Relative advantages and disadvantages of each of the techniques are discussed, highlighting examples where they are used in combination and have the potential to address new frontiers in understanding complex biological processes.
蛋白质在生命系统中发挥着各种各样的催化、调节、信号传导和结构功能。在核糖体上组装完成后以及在其整个生命周期中,大多数真核生物蛋白质都会发生翻译后修饰;小的功能基团和复杂的生物分子会与氨基酸侧链或末端结合,蛋白质主链会被切割、剪接或环化,仅举几例。这些修饰会调节蛋白质的活性、结构、位置和相互作用,从而控制许多核心生物学过程。异常的翻译后修饰是细胞应激或功能异常的标志,并与多种疾病有关。因此,了解哪些蛋白质被修饰、在哪些位点被修饰以及由此产生的生物学后果是一项重要但复杂的挑战,需要跨学科方法。其中一个关键挑战是获取经过精确修饰的蛋白质,以便将功能后果归因于特定修饰。化学生物学家已经开发出一套通用的工具,通过将强大的化学方法应用于生物分子以及开发蛋白质合成和连接策略来获取经过特定修饰的蛋白质。本综述概述了这些工具,并列举了一些近期的实例,说明它们如何被用于解读各种蛋白质翻译后修饰的作用。讨论了每种技术的相对优缺点,重点介绍了它们结合使用以及有可能在理解复杂生物学过程方面开拓新领域的实例。
Nat Rev Chem. 2020-12
Front Oncol. 2023-9-19
Elife. 2021-5-21
Front Cell Dev Biol. 2021-7-29
Adv Protein Chem Struct Biol. 2020
Invest Ophthalmol Vis Sci. 2025-7-1
Angew Chem Int Ed Engl. 2025-8-11
J Am Chem Soc. 2025-6-4
Plants (Basel). 2024-11-25
Biochemistry. 2024-12-17
Chembiochem. 2020-12-1
Curr Opin Chem Biol. 2020-10
Curr Opin Chem Biol. 2021-2
Cell Chem Biol. 2020-8-20
Nat Chem Biol. 2020-6-1
Nat Chem Biol. 2020-6-1
Nat Chem. 2020-5-29