Xu Junkang, Wan Qiang, Wang Zhonghui, Lin Sen
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
Phys Chem Chem Phys. 2020 Dec 7;22(46):26995-27001. doi: 10.1039/d0cp05308b.
In this work, we systematically study the electronic band structures of fluorine-passivated graphdiyne nanoribbons (F_GDYNRs) doped with BN pairs using first-principles density functional theory calculations. The calculation results show that that fluorine passivation and heteroatom doping play different roles in modifying the electronic structures of F_GDYNRs. The former helps lower the position of the valence band of the graphdiyne nanoribbons (GDYNRs) while the latter significantly opens the band gap of GDYNRs. The doped F_GDYNRs have direct band gaps of 1.8-2.9 eV, and their valence and conduction bands perfectly straddle both the oxidation and reduction potential of water. This work demonstrates that F_GDYNRs, via doping with BN pairs, possess high catalytic activity for water splitting, which will shed light on the design of metal-free low-dimensional photocatalysts.
在这项工作中,我们使用第一性原理密度泛函理论计算系统地研究了掺杂硼氮对的氟钝化石墨炔纳米带(F_GDYNRs)的电子能带结构。计算结果表明,氟钝化和杂原子掺杂在修饰F_GDYNRs的电子结构中发挥着不同的作用。前者有助于降低石墨炔纳米带(GDYNRs)价带的位置,而后者显著打开了GDYNRs的带隙。掺杂的F_GDYNRs具有1.8 - 2.9 eV的直接带隙,其价带和导带完美跨越了水的氧化和还原电位。这项工作表明,通过掺杂硼氮对,F_GDYNRs对水分解具有高催化活性,这将为无金属低维光催化剂的设计提供启示。