Yousefizad Milad, Golshan Bafghi Zohreh, Shahriyari Amirmohammad, Javanmardi Andia, Hakimi Raad Naser, Shadmehri Ashraf Ahmadi, Samoodi Siavosh, Manavizadeh Negin, Moafi Ali
Nanostuctued-Electronic Devices Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, 163171419 Tehran, Iran.
Physics and Energy Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.
Heliyon. 2025 Jan 27;11(3):e42300. doi: 10.1016/j.heliyon.2025.e42300. eCollection 2025 Feb 15.
Copper Zinc Tin Sulfide (CZTS) solar cells have absorbed significant appeal as an efficient approach for sustainable photovoltaic technology. This research introduces a groundbreaking approach to thin-film solar cells using a novel Fluorine-doped CZTS composition with a new device configuration. The DFT calculations indicate that F atoms prefer Cu sites and maintain a direct band gap in CZTS, promoting n-type conductivity. Optical studies demonstrate that F-doping enhances conductivity, refractive index, and light absorption through the visible spectrum. Furthermore, the performance of CZTS-based cells in both heterojunction and homojunction configurations is under investigation. The homojunction configuration with Al:ZnO intermediate layer enhances V and J compared to conventional heterojunction structures. The J and V of homojunction solar cells with AZO layer are 24.74 mAcm and 0.94 V, respectively. The efficiency of the solar cell is optimized considering the thickness of the p-CZTS layer, which saturates at 21.8 % beyond 5 μm thickness. At the beginning of near-infrared wavelengths, the homojunction structure effectively absorbs light. Combining F-doped CZTS and homojunction configuration with a ZnO and AZO intermediate layer demonstrates superior performance due to reduced carrier recombination and enhanced photogeneration. The novel homojunction design advances CZTS-based technology, achieving impressive effectiveness using environmentally friendly materials.
硫化铜锌锡(CZTS)太阳能电池作为可持续光伏技术的一种有效途径,已吸引了广泛关注。本研究介绍了一种用于薄膜太阳能电池的开创性方法,该方法采用了具有新型器件结构的新型氟掺杂CZTS组合物。密度泛函理论(DFT)计算表明,F原子倾向于占据Cu位点,并在CZTS中保持直接带隙,从而促进n型导电性。光学研究表明,氟掺杂可提高导电性、折射率,并增强在可见光谱范围内的光吸收。此外,基于CZTS的电池在异质结和同质结配置下的性能正在研究中。与传统异质结结构相比,具有Al:ZnO中间层的同质结配置提高了电压(V)和电流密度(J)。具有AZO层的同质结太阳能电池的电流密度和电压分别为24.74 mA/cm²和0.94 V。考虑到p-CZTS层的厚度对太阳能电池效率进行了优化,当厚度超过5μm时,效率饱和在21.8%。在近红外波长开始时,同质结结构能有效吸收光。将氟掺杂的CZTS与具有ZnO和AZO中间层的同质结配置相结合,由于减少了载流子复合并增强了光生载流子,表现出卓越的性能。这种新型同质结设计推动了基于CZTS的技术发展,使用环保材料实现了令人瞩目的效率。