Suppr超能文献

利用便携式膜进样傅里叶变换离子回旋共振质谱在线监测海水中氯产生的氧化剂的挑战与机遇。

Challenges and opportunities for on-line monitoring of chlorine-produced oxidants in seawater using portable membrane-introduction Fourier transform-ion cyclotron resonance mass spectrometry.

机构信息

Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai Watier, 78401, Chatou Cedex 01, France.

Laboratoire de Chimie Moléculaire, CNRS, Institut polytechnique de Paris, Route de Saclay, 91128, Palaiseau, France.

出版信息

Anal Bioanal Chem. 2021 Jan;413(3):885-900. doi: 10.1007/s00216-020-03043-3. Epub 2020 Nov 19.

Abstract

The present study reports the first evaluation of a MIMS device equipped with a high-resolution Fourier transform-ion cyclotron resonance mass spectrometer (FT-ICR MS) for comprehensive speciation of chlorine-produced oxidants (CPO) in seawater. A total of 40 model compounds were studied: 4 inorganic haloamines (mono-, di-, and trichloramine and monobromamine), 22 organic N-haloamines, 12 N-haloamino acids, and 2 free oxidants (HOCl/ClO and HOBr/BrO). The main key factors influencing the analytes' introduction and their detection were optimized. Under optimized conditions, the rise and fall times of the MIMS signal ranged from 8 to 79 min and from 7 to 73 min, respectively, depending on the compound. Free oxidants and N-haloamino acids, which are ionic or too polar at seawater pH, hardly crossed the membrane, and MIMS analysis was thus unsuitable. Nevertheless, better enrichment and therefore better sensitivity were achieved with organic N-haloamines than with inorganic haloamines. The observed detection limits ranged from tens of μM to sub-μM levels. Oxidant decomposition occurred inside the MIMS device, at a higher rate for N-bromamines than for chlorinated analogues.Graphical abstract.

摘要

本研究首次评估了配备高分辨率傅里叶变换离子回旋共振质谱仪(FT-ICR MS)的 MIMS 设备,用于全面研究海水中产生的氯氧化剂(CPO)的形态。共研究了 40 种模型化合物:4 种无机卤胺(一氯胺、二氯胺和三氯胺以及一溴胺)、22 种有机 N-卤胺、12 种 N-卤代氨基酸和 2 种游离氧化剂(HOCl/ClO 和 HOBr/BrO)。优化了影响分析物引入和检测的主要关键因素。在优化条件下,MIMS 信号的上升和下降时间分别取决于化合物,范围从 8 到 79 分钟和从 7 到 73 分钟。在海水 pH 值下为离子态或极性过大的游离氧化剂和 N-卤代氨基酸几乎无法穿过膜,因此不适合 MIMS 分析。然而,与无机卤胺相比,有机 N-卤胺的富集效果更好,因此灵敏度更高。观察到的检测限范围从数十 μM 到亚 μM 水平。氧化剂在 MIMS 装置内分解,N-溴胺的分解速率高于氯化类似物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验