Kinani Said, Layousse Stéphany, Richard Bertille, Kinani Aziz, Bouchonnet Stéphane, Thoma Astrid, Sacher Frank
Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France.
Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France.
Talanta. 2015 Aug 1;140:189-197. doi: 10.1016/j.talanta.2015.03.043. Epub 2015 Mar 30.
Monochloramine (MCA) may enter the aquatic environment through three main sources: wastewater treatment plant effluents, industrial effluents and thermal power plant wastes. Up to date, there are no available data about the concentration levels of this chemical in river water due to lack of appropriate analytical methods. Therefore, sensitive and selective analytical methods for monochloramine analysis in river water are required to evaluate its environmental fate and its effects on aquatic ecosystems. Thus, in this study we describe a highly specific and sensitive method for monochloramine determination in river water. This method combines chemical derivatization of monochloramine into indophenol followed by liquid chromatography coupled to electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) analysis. Two precursor-to-product ion transitions were monitored (200→127 and 200→154) in positive ionisation mode, fulfilling the criteria of selectivity, in accordance with the European Legislation requirements (decision 2002/657/EC). Ion structures and fragmentation mechanisms have been proposed to explain the selected transitions. Linearity range, accuracy and precision of the method have been assessed according to the French method validation standard NF T90-210. Detecting the derivatized monochloramine (indophenol) in Multiple Reaction Monitoring (MRM) mode provided a limit of quantification of 40 ng L(-1) equivalent monochloramine. Applied to Loire river water (France), the developed method occasionally detected monochloramine at concentrations less than 300 ng L(-1), which could be explained by punctual discharges of water containing active chlorine upstream of the sampling point. Indeed, it is widely reported in the literature that the addition of chlorine to water containing ammonia (e.g., wastewater effluents and river water) may result in the instantaneous formation of monochloramine. The proposed method is a powerful tool that can be used in environmental research (e.g., assessment of environmental fate and generating of ecotoxicological data) as well as in research studies concerning the evaluation of water disinfection efficiency; but it is not currently appropriate for routine use in industrial applications given the complexity of the procedure, the instability of indophenol and the use of certain toxic reagents.
一氯胺(MCA)可能通过三个主要来源进入水生环境:污水处理厂废水、工业废水和热电厂废弃物。到目前为止,由于缺乏合适的分析方法,尚无关于河水中这种化学物质浓度水平的可用数据。因此,需要灵敏且具选择性的分析方法来测定河水中的一氯胺,以评估其环境归宿及其对水生生态系统的影响。因此,在本研究中,我们描述了一种用于测定河水中一氯胺的高度特异且灵敏的方法。该方法将一氯胺化学衍生化为靛酚,随后进行液相色谱-电喷雾电离串联质谱(LC-ESI-MS/MS)分析。在正离子化模式下监测了两个前体离子到产物离子的跃迁(200→127和200→154),符合选择性标准,符合欧洲法规要求(2002/657/EC号决定)。已提出离子结构和裂解机制来解释所选跃迁。根据法国方法验证标准NF T90-210评估了该方法的线性范围、准确度和精密度。在多反应监测(MRM)模式下检测衍生化的一氯胺(靛酚),得到的定量限为40 ng L⁻¹等效一氯胺。应用于法国卢瓦尔河河水时,所开发的方法偶尔检测到浓度低于300 ng L⁻¹的一氯胺,这可能是由于采样点上游含有活性氯的水的点状排放所致。确实,文献中广泛报道,向含氨水中(如废水和河水)添加氯可能会导致一氯胺的瞬时形成。所提出的方法是一种强大的工具,可用于环境研究(如评估环境归宿和生成生态毒理学数据)以及有关水消毒效率评估的研究;但鉴于该程序的复杂性、靛酚的不稳定性以及某些有毒试剂的使用,目前它不适用于工业应用中的常规使用。