Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg 21073, Germany.
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
J Phys Chem B. 2020 Dec 10;124(49):11263-11272. doi: 10.1021/acs.jpcb.0c07306. Epub 2020 Nov 19.
Controlling the nanoscale interactions of colloidal building blocks is a key step for the transition from single nanoparticles to tailor-made, architected morphologies and their further integration into functional materials. Solvent evaporation-induced self-assembly within emulsion droplets emerges as a fast, versatile, and low-cost approach to obtain spherical, complex structures, such as supraparticles. Nevertheless, some process-structure relationships able to describe the effects of emulsion conditions on the synthesis outcomes still remain to be understood. Here, we explore the effect of different physicochemical parameters of emulsion-templated self-assembly (ETSA) on supraparticles' formation. Supraparticle size, size dispersity, microporosity, and sample homogeneity are rationalized based on the used surfactant formulation, stabilization mechanism, and viscosity of the emulsion. We further demonstrate the significance of the parameters found by optimizing a transferable, large-scale (gram-size) ETSA setup for the controlled synthesis of spherical supraparticles in a range of defined sizes (from 0.1-10 μm). Ultimately, our results provide new key synthetic parameters able to control the process, promoting the development of supraparticle-based, functional nanomaterials for a wide range of applications.
控制胶体构建块的纳米级相互作用是从单个纳米颗粒向定制的、结构合理的形态转变的关键步骤,也是将其进一步集成到功能材料中的关键步骤。乳液液滴中溶剂蒸发诱导的自组装是一种快速、通用且低成本的方法,可以获得球形复杂结构,例如超粒子。然而,一些能够描述乳液条件对合成结果影响的工艺-结构关系仍有待理解。在这里,我们探讨了乳液模板自组装(ETSA)的不同物理化学参数对超粒子形成的影响。根据所用表面活性剂配方、稳定机制和乳液的粘度,对超粒子的尺寸、尺寸分散性、微孔率和样品均一性进行了合理化解释。我们进一步通过优化可转移的、大规模(克级)的 ETSA 装置,在一系列定义的尺寸(从 0.1-10 μm)范围内控制球形超粒子的合成,证明了所发现参数的重要性。最终,我们的结果提供了新的关键合成参数,能够控制这一过程,促进基于超粒子的功能纳米材料的发展,以满足广泛的应用需求。