Suppr超能文献

无原始数据,无科学:再现性危机的另一个可能来源。

No raw data, no science: another possible source of the reproducibility crisis.

机构信息

Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.

出版信息

Mol Brain. 2020 Feb 21;13(1):24. doi: 10.1186/s13041-020-0552-2.

Abstract

A reproducibility crisis is a situation where many scientific studies cannot be reproduced. Inappropriate practices of science, such as HARKing, p-hacking, and selective reporting of positive results, have been suggested as causes of irreproducibility. In this editorial, I propose that a lack of raw data or data fabrication is another possible cause of irreproducibility.As an Editor-in-Chief of Molecular Brain, I have handled 180 manuscripts since early 2017 and have made 41 editorial decisions categorized as "Revise before review," requesting that the authors provide raw data. Surprisingly, among those 41 manuscripts, 21 were withdrawn without providing raw data, indicating that requiring raw data drove away more than half of the manuscripts. I rejected 19 out of the remaining 20 manuscripts because of insufficient raw data. Thus, more than 97% of the 41 manuscripts did not present the raw data supporting their results when requested by an editor, suggesting a possibility that the raw data did not exist from the beginning, at least in some portions of these cases.Considering that any scientific study should be based on raw data, and that data storage space should no longer be a challenge, journals, in principle, should try to have their authors publicize raw data in a public database or journal site upon the publication of the paper to increase reproducibility of the published results and to increase public trust in science.

摘要

可重复性危机是指许多科学研究无法被重复的情况。不恰当的科学实践,如 HARKing、p 值操纵和选择性报告阳性结果,被认为是不可重复性的原因。在这篇社论中,我提出缺乏原始数据或数据伪造也是不可重复性的另一个可能原因。

作为《分子大脑》的主编,自 2017 年初以来,我处理了 180 篇手稿,并做出了 41 项编辑决策,归类为“审查前修改”,要求作者提供原始数据。令人惊讶的是,在这 41 篇手稿中,有 21 篇在没有提供原始数据的情况下撤回,表明要求提供原始数据赶走了超过一半的手稿。我拒绝了剩余的 20 篇手稿中的 19 篇,原因是原始数据不足。因此,在编辑要求提供原始数据时,41 篇手稿中超过 97%的手稿没有提供支持其结果的原始数据,这表明原始数据从一开始就不存在,至少在这些案例的某些部分是这样。

考虑到任何科学研究都应该基于原始数据,并且数据存储空间不再是一个挑战,期刊原则上应该尝试要求作者在论文发表后将原始数据发布在公共数据库或期刊网站上,以提高已发表结果的可重复性,并增加公众对科学的信任。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9371/7033918/b6df263d34d4/13041_2020_552_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验