Suppr超能文献

用于体可视化的学习自适应采样与重建

Learning Adaptive Sampling and Reconstruction for Volume Visualization.

作者信息

Weiss Sebastian, Isk Mustafa, Thies Justus, Westermann Rudiger

出版信息

IEEE Trans Vis Comput Graph. 2022 Jul;28(7):2654-2667. doi: 10.1109/TVCG.2020.3039340. Epub 2022 May 26.

Abstract

A central challenge in data visualization is to understand which data samples are required to generate an image of a data set in which the relevant information is encoded. In this article, we make a first step towards answering the question of whether an artificial neural network can predict where to sample the data with higher or lower density, by learning of correspondences between the data, the sampling patterns and the generated images. We introduce a novel neural rendering pipeline, which is trained end-to-end to generate a sparse adaptive sampling structure from a given low-resolution input image, and reconstructs a high-resolution image from the sparse set of samples. For the first time, to the best of our knowledge, we demonstrate that the selection of structures that are relevant for the final visual representation can be jointly learned together with the reconstruction of this representation from these structures. Therefore, we introduce differentiable sampling and reconstruction stages, which can leverage back-propagation based on supervised losses solely on the final image. We shed light on the adaptive sampling patterns generated by the network pipeline and analyze its use for volume visualization including isosurface and direct volume rendering.

摘要

数据可视化中的一个核心挑战是理解需要哪些数据样本才能生成一个对数据集进行编码的相关信息的图像。在本文中,我们朝着回答人工神经网络是否能够通过学习数据、采样模式和生成图像之间的对应关系来预测在何处对密度较高或较低的数据进行采样这一问题迈出了第一步。我们引入了一种新颖的神经渲染管道,该管道经过端到端训练,从给定的低分辨率输入图像生成稀疏自适应采样结构,并从稀疏样本集重建高分辨率图像。据我们所知,我们首次证明与最终视觉表示相关的结构选择可以与从这些结构重建此表示一起联合学习。因此,我们引入了可微采样和重建阶段,它们可以仅基于最终图像上的监督损失利用反向传播。我们阐明了网络管道生成的自适应采样模式,并分析了其在体可视化(包括等值面和直接体绘制)中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验