Suppr超能文献

使用深度卷积神经网络从低剂量胸部数字断层合成的稀疏数据中恢复完整数据

Restoration of Full Data from Sparse Data in Low-Dose Chest Digital Tomosynthesis Using Deep Convolutional Neural Networks.

作者信息

Lee Donghoon, Kim Hee-Joung

机构信息

Department of Radiation Convergence Engineering, Research Institute of Health Science, Yonsei University, Wonju, Gangwon, 26493, South Korea.

Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Gangwon, 26493, South Korea.

出版信息

J Digit Imaging. 2019 Jun;32(3):489-498. doi: 10.1007/s10278-018-0124-5.

Abstract

Chest digital tomosynthesis (CDT) provides more limited image information required for diagnosis when compared to computed tomography. Moreover, the radiation dose received by patients is higher in CDT than in chest radiography. Thus, CDT has not been actively used in clinical practice. To increase the usefulness of CDT, the radiation dose should reduce to the level used in chest radiography. Given the trade-off between image quality and radiation dose in medical imaging, a strategy to generating high-quality images from limited data is need. We investigated a novel approach for acquiring low-dose CDT images based on learning-based algorithms, such as deep convolutional neural networks. We used both simulation and experimental imaging data and focused on restoring reconstructed images from sparse to full sampling data. We developed a deep learning model based on end-to-end image translation using U-net. We used 11 and 81 CDT reconstructed input and output images, respectively, to develop the model. To measure the radiation dose of the proposed method, we investigated effective doses using Monte Carlo simulations. The proposed deep learning model effectively restored images with degraded quality due to lack of sampling data. Quantitative evaluation using structure similarity index measure (SSIM) confirmed that SSIM was increased by approximately 20% when using the proposed method. The effective dose required when using sparse sampling data was approximately 0.11 mSv, similar to that used in chest radiography (0.1 mSv) based on a report by the Radiation Society of North America. We investigated a new approach for reconstructing tomosynthesis images using sparse projection data. The model-based iterative reconstruction method has previously been used for conventional sparse sampling reconstruction. However, model-based computing requires high computational power, which limits fast three-dimensional image reconstruction and thus clinical applicability. We expect that the proposed learning-based reconstruction strategy will generate images with excellent quality quickly and thus have the potential for clinical use.

摘要

与计算机断层扫描相比,胸部数字断层合成(CDT)提供的诊断所需图像信息较为有限。此外,患者在CDT中接受的辐射剂量高于胸部X线摄影。因此,CDT在临床实践中并未得到积极应用。为了提高CDT的实用性,辐射剂量应降低至胸部X线摄影所使用的水平。鉴于医学成像中图像质量与辐射剂量之间的权衡,需要一种从有限数据生成高质量图像的策略。我们研究了一种基于深度学习算法(如深度卷积神经网络)获取低剂量CDT图像的新方法。我们使用了模拟和实验成像数据,并专注于将重建图像从稀疏采样数据恢复到全采样数据。我们基于使用U-net的端到端图像转换开发了一个深度学习模型。我们分别使用11张和81张CDT重建的输入和输出图像来开发该模型。为了测量所提出方法的辐射剂量,我们使用蒙特卡罗模拟研究了有效剂量。所提出的深度学习模型有效地恢复了因采样数据不足而质量下降的图像。使用结构相似性指数测量(SSIM)进行的定量评估证实,使用所提出的方法时SSIM提高了约20%。根据北美放射学会的一份报告,使用稀疏采样数据时所需的有效剂量约为0.11 mSv,与胸部X线摄影所使用的剂量(0.1 mSv)相似。我们研究了一种使用稀疏投影数据重建断层合成图像的新方法。基于模型的迭代重建方法此前已用于传统的稀疏采样重建。然而,基于模型的计算需要高计算能力,这限制了快速三维图像重建,从而限制了临床适用性。我们期望所提出的基于学习的重建策略能够快速生成高质量的图像,因此具有临床应用潜力。

相似文献

本文引用的文献

3
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
9
Iterative reconstruction methods in X-ray CT.X 射线 CT 中的迭代重建方法。
Phys Med. 2012 Apr;28(2):94-108. doi: 10.1016/j.ejmp.2012.01.003. Epub 2012 Feb 10.
10
X-ray tomosynthesis: a review of its use for breast and chest imaging.X线断层合成成像:用于乳腺和胸部成像的综述
Radiat Prot Dosimetry. 2010 Apr-May;139(1-3):100-7. doi: 10.1093/rpd/ncq099. Epub 2010 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验