IEEE Trans Vis Comput Graph. 2023 Jan;29(1):515-525. doi: 10.1109/TVCG.2022.3209498. Epub 2022 Dec 19.
Volume data is found in many important scientific and engineering applications. Rendering this data for visualization at high quality and interactive rates for demanding applications such as virtual reality is still not easily achievable even using professional-grade hardware. We introduce FoVolNet-a method to significantly increase the performance of volume data visualization. We develop a cost-effective foveated rendering pipeline that sparsely samples a volume around a focal point and reconstructs the full-frame using a deep neural network. Foveated rendering is a technique that prioritizes rendering computations around the user's focal point. This approach leverages properties of the human visual system, thereby saving computational resources when rendering data in the periphery of the user's field of vision. Our reconstruction network combines direct and kernel prediction methods to produce fast, stable, and perceptually convincing output. With a slim design and the use of quantization, our method outperforms state-of-the-art neural reconstruction techniques in both end-to-end frame times and visual quality. We conduct extensive evaluations of the system's rendering performance, inference speed, and perceptual properties, and we provide comparisons to competing neural image reconstruction techniques. Our test results show that FoVolNet consistently achieves significant time saving over conventional rendering while preserving perceptual quality.
体数据集在许多重要的科学和工程应用中都有出现。即使使用专业级硬件,对于虚拟现实等要求较高的应用,以高质量和交互速率呈现这些数据仍然不容易实现。我们引入了 FoVolNet,这是一种显著提高体数据集可视化性能的方法。我们开发了一种具有成本效益的注视点渲染管道,该管道稀疏地围绕焦点对体数据集进行采样,并使用深度神经网络重建全帧。注视点渲染是一种将渲染计算优先于用户焦点的技术。这种方法利用了人类视觉系统的特性,从而在渲染用户视野外围的数据时节省了计算资源。我们的重建网络结合了直接预测和核预测方法,以产生快速、稳定和具有感知说服力的输出。通过精简设计和量化使用,我们的方法在端到端帧率和视觉质量方面都优于最先进的神经重建技术。我们对系统的渲染性能、推理速度和感知特性进行了广泛的评估,并提供了与竞争的神经图像重建技术的比较。我们的测试结果表明,FoVolNet 在保持感知质量的同时,始终能够显著节省传统渲染的时间。