Suppr超能文献

FoVolNet:基于注意机制深度神经网络的快速体绘制

FoVolNet: Fast Volume Rendering using Foveated Deep Neural Networks.

出版信息

IEEE Trans Vis Comput Graph. 2023 Jan;29(1):515-525. doi: 10.1109/TVCG.2022.3209498. Epub 2022 Dec 19.

Abstract

Volume data is found in many important scientific and engineering applications. Rendering this data for visualization at high quality and interactive rates for demanding applications such as virtual reality is still not easily achievable even using professional-grade hardware. We introduce FoVolNet-a method to significantly increase the performance of volume data visualization. We develop a cost-effective foveated rendering pipeline that sparsely samples a volume around a focal point and reconstructs the full-frame using a deep neural network. Foveated rendering is a technique that prioritizes rendering computations around the user's focal point. This approach leverages properties of the human visual system, thereby saving computational resources when rendering data in the periphery of the user's field of vision. Our reconstruction network combines direct and kernel prediction methods to produce fast, stable, and perceptually convincing output. With a slim design and the use of quantization, our method outperforms state-of-the-art neural reconstruction techniques in both end-to-end frame times and visual quality. We conduct extensive evaluations of the system's rendering performance, inference speed, and perceptual properties, and we provide comparisons to competing neural image reconstruction techniques. Our test results show that FoVolNet consistently achieves significant time saving over conventional rendering while preserving perceptual quality.

摘要

体数据集在许多重要的科学和工程应用中都有出现。即使使用专业级硬件,对于虚拟现实等要求较高的应用,以高质量和交互速率呈现这些数据仍然不容易实现。我们引入了 FoVolNet,这是一种显著提高体数据集可视化性能的方法。我们开发了一种具有成本效益的注视点渲染管道,该管道稀疏地围绕焦点对体数据集进行采样,并使用深度神经网络重建全帧。注视点渲染是一种将渲染计算优先于用户焦点的技术。这种方法利用了人类视觉系统的特性,从而在渲染用户视野外围的数据时节省了计算资源。我们的重建网络结合了直接预测和核预测方法,以产生快速、稳定和具有感知说服力的输出。通过精简设计和量化使用,我们的方法在端到端帧率和视觉质量方面都优于最先进的神经重建技术。我们对系统的渲染性能、推理速度和感知特性进行了广泛的评估,并提供了与竞争的神经图像重建技术的比较。我们的测试结果表明,FoVolNet 在保持感知质量的同时,始终能够显著节省传统渲染的时间。

相似文献

1
FoVolNet: Fast Volume Rendering using Foveated Deep Neural Networks.FoVolNet:基于注意机制深度神经网络的快速体绘制
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):515-525. doi: 10.1109/TVCG.2022.3209498. Epub 2022 Dec 19.
3
Scene-aware Foveated Rendering.场景感知中心凹渲染
IEEE Trans Vis Comput Graph. 2024 Nov;30(11):7097-7106. doi: 10.1109/TVCG.2024.3456157. Epub 2024 Oct 10.
4
3D-Kernel Foveated Rendering for Light Fields.用于光场的3D内核中央凹渲染
IEEE Trans Vis Comput Graph. 2021 Aug;27(8):3350-3360. doi: 10.1109/TVCG.2020.2975801. Epub 2021 Jun 30.
5
Eye-dominance-guided Foveated Rendering.眼优势引导的注视点渲染。
IEEE Trans Vis Comput Graph. 2020 May;26(5):1972-1980. doi: 10.1109/TVCG.2020.2973442. Epub 2020 Feb 20.
6
Scene-Aware Foveated Neural Radiance Fields.场景感知的中央凹神经辐射场
IEEE Trans Vis Comput Graph. 2025 Sep;31(9):5039-5054. doi: 10.1109/TVCG.2024.3429416.
7
Foveated Stochastic Lightcuts.中央凹随机光切法
IEEE Trans Vis Comput Graph. 2022 Nov;28(11):3684-3693. doi: 10.1109/TVCG.2022.3203089. Epub 2022 Oct 21.
8
Foveated Photon Mapping.注视点光子映射
IEEE Trans Vis Comput Graph. 2021 Nov;27(11):4183-4193. doi: 10.1109/TVCG.2021.3106488. Epub 2021 Oct 27.
9
Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution.基于深度学习超分辨率的容积等值面渲染
IEEE Trans Vis Comput Graph. 2021 Jun;27(6):3064-3078. doi: 10.1109/TVCG.2019.2956697. Epub 2021 May 12.

本文引用的文献

1
Learning Adaptive Sampling and Reconstruction for Volume Visualization.用于体可视化的学习自适应采样与重建
IEEE Trans Vis Comput Graph. 2022 Jul;28(7):2654-2667. doi: 10.1109/TVCG.2020.3039340. Epub 2022 May 26.
2
Deep Volumetric Ambient Occlusion.深度体积环境光遮蔽
IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1268-1278. doi: 10.1109/TVCG.2020.3030344. Epub 2021 Jan 28.
4
Multi-Material Volume Rendering with a Physically-Based Surface Reflection Model.基于物理表面反射模型的多材料体绘制
IEEE Trans Vis Comput Graph. 2018 Dec;24(12):3147-3159. doi: 10.1109/TVCG.2017.2784830. Epub 2017 Dec 19.
5
OSPRay - A CPU Ray Tracing Framework for Scientific Visualization.OSPRay - 用于科学可视化的 CPU 光线追踪框架。
IEEE Trans Vis Comput Graph. 2017 Jan;23(1):931-940. doi: 10.1109/TVCG.2016.2599041.
9
Image plane sweep volume illumination.层面扫描容积照射。
IEEE Trans Vis Comput Graph. 2011 Dec;17(12):2125-34. doi: 10.1109/TVCG.2011.211.
10
Local ambient occlusion in direct volume rendering.直接体绘制中的局部环境光遮蔽。
IEEE Trans Vis Comput Graph. 2010 Jul-Aug;16(4):548-59. doi: 10.1109/TVCG.2009.45.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验