Aix Marseille Université and CNRS, IBDM - UMR7288 and Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France.
Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France.
Curr Biol. 2021 Feb 8;31(3):459-472.e4. doi: 10.1016/j.cub.2020.10.054. Epub 2020 Nov 18.
Dendrite morphology is necessary for the correct integration of inputs that neurons receive. The branching mechanisms allowing neurons to acquire their type-specific morphology remain unclear. Classically, axon and dendrite patterns were shown to be guided by molecules, providing deterministic cues. However, the extent to which deterministic and stochastic mechanisms, based upon purely statistical bias, contribute to the emergence of dendrite shape is largely unknown. We address this issue using the Drosophila class I vpda multi-dendritic neurons. Detailed quantitative analysis of vpda dendrite morphogenesis indicates that the primary branch grows very robustly in a fixed direction, though secondary branch numbers and lengths showed fluctuations characteristic of stochastic systems. Live-tracking dendrites and computational modeling revealed how neuron shape emerges from few local statistical parameters of branch dynamics. We report key opposing aspects of how tree architecture feedbacks on the local probability of branch shrinkage. Child branches promote stabilization of parent branches, although self-repulsion promotes shrinkage. Finally, we show that self-repulsion, mediated by the adhesion molecule Dscam1, indirectly patterns the growth of secondary branches by spatially restricting their direction of stable growth perpendicular to the primary branch. Thus, the stochastic nature of secondary branch dynamics and the existence of geometric feedback emphasize the importance of self-organization in neuronal dendrite morphogenesis.
树突形态对于神经元正确接收输入是必要的。允许神经元获得其特定类型形态的分支机制仍不清楚。经典地,轴突和树突模式被证明是由分子指导的,提供确定性的线索。然而,基于纯粹的统计偏差的确定性和随机性机制在多大程度上有助于树突形状的出现,在很大程度上是未知的。我们使用果蝇 I 类 vpda 多树突神经元来解决这个问题。对 vpda 树突形态发生的详细定量分析表明,主要分支以固定的方向非常稳健地生长,尽管二级分支的数量和长度表现出随机系统的特征波动。活追踪树突和计算建模揭示了神经元形状如何从分支动力学的少数局部统计参数中出现。我们报告了树状结构如何反馈到分支收缩的局部概率的关键相反方面。子分支促进母分支的稳定,尽管自排斥促进收缩。最后,我们表明,由粘附分子 Dscam1 介导的自排斥通过空间限制它们垂直于主分支的稳定生长方向,间接控制二级分支的生长。因此,二级分支动力学的随机性和几何反馈的存在强调了自我组织在神经元树突形态发生中的重要性。