Suppr超能文献

神经元利用随机生长来快速且经济地构建密集的树突分支。

Neurons exploit stochastic growth to rapidly and economically build dense dendritic arbors.

作者信息

Ouyang Xiaoyi, Sutradhar Sabyasachi, Trottier Olivier, Shree Sonal, Yu Qiwei, Tu Yuhai, Howard Jonathon

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.

Department of Physics, Yale University, New Haven, CT, 06511, USA.

出版信息

Nat Commun. 2025 Jul 1;16(1):5903. doi: 10.1038/s41467-025-60800-7.

Abstract

Dendrites grow by stochastic branching, elongation, and retraction. A key question is whether such a mechanism is sufficient to form highly branched dendritic morphologies. Alternatively, does dendrite geometry depend on signals from other cells or from the topological hierarchy of the growing network? To answer these questions, we developed an isotropic and homogenous mean-field model in which branch dynamics depends only on average lengths and densities: that is, without external influence. Branching was modeled as density-dependent nucleation so that no tree structures or network topology was present. Despite its simplicity, the model predicted several key morphological properties of class IV Drosophila sensory dendrites, including the exponential distribution of branch lengths, the parabolic scaling between dendrite number and length densities, the tight spacing of the dendritic meshwork (which required minimal total branch length), and the radial orientation of branches. Stochastic growth also accelerated the overall expansion rate of the arbor. We show that stochastic dynamics is an economical and rapid space-filling mechanism for building dendritic arbors without external guidance or hierarchical branching mechanisms. Our work therefore provides a general theoretical framework for understanding how macroscopic branching patterns emerge from microscopic dynamics.

摘要

树突通过随机分支、延伸和回缩生长。一个关键问题是,这样一种机制是否足以形成高度分支的树突形态。或者,树突的几何形状是否取决于来自其他细胞或生长网络拓扑层次结构的信号?为了回答这些问题,我们开发了一个各向同性和均匀的平均场模型,其中分支动力学仅取决于平均长度和密度:也就是说,没有外部影响。分支被建模为密度依赖的成核过程,因此不存在树状结构或网络拓扑。尽管该模型很简单,但它预测了果蝇IV类感觉树突的几个关键形态特性,包括分支长度的指数分布、树突数量与长度密度之间的抛物线比例关系、树突网络的紧密间距(这需要最小的总分支长度)以及分支的径向取向。随机生长还加快了树突的整体扩展速度。我们表明,随机动力学是一种在没有外部引导或层次分支机制的情况下构建树突的经济且快速的空间填充机制。因此,我们的工作为理解宏观分支模式如何从微观动力学中出现提供了一个通用的理论框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验