Suppr超能文献

预测转移性脊柱内肿瘤切除术后的死亡率:机器学习方法的发展。

Predicting Postoperative Mortality After Metastatic Intraspinal Neoplasm Excision: Development of a Machine-Learning Approach.

机构信息

Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA.

Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA.

出版信息

World Neurosurg. 2021 Feb;146:e917-e924. doi: 10.1016/j.wneu.2020.11.037. Epub 2020 Nov 16.

Abstract

OBJECTIVE

Mortality following surgical resection of spinal tumors is a devastating outcome. Naïve Bayes machine learning algorithms may be leveraged in surgical planning to predict mortality. In this investigation, we use a Naïve Bayes classification algorithm to predict mortality following spinal tumor excision within 30 days of surgery.

METHODS

Patients who underwent laminectomies between 2006 and 2018 for excisions of intraspinal neoplasms were selected from the National Surgical Quality Initiative Program. Naïve Bayes classifier analysis was conducted in Python. The area under the receiver operating curve (AUC) was calculated to evaluate the classifier's ability to predict mortality within 30 days of surgery. Multivariable logistic regression analysis was performed in R to identify risk factors for 30-day postoperative mortality.

RESULTS

In total, 2094 spine tumor surgery patients were included in the study. The 30-day mortality rate was 5.16%. The classifier yielded an AUC of 0.898, which exceeds the predictive capacity of the National Surgical Quality Initiative Program mortality probability calculator's AUC of 0.722 (P < 0.0001). The multivariable regression indicated that smoking history, chronic obstructive pulmonary disease, disseminated cancer, bleeding disorder history, dyspnea, and low albumin levels were strongly associated with 30-day mortality.

CONCLUSIONS

The Naïve Bayes classifier may be used to predict 30-day mortality for patients undergoing spine tumor excisions, with an increasing degree of accuracy as the model better performs by learning continuously from the input patient data. Patient outcomes can be improved by identifying high-risk populations early using the algorithm and applying that data to inform preoperative decision making, as well as patient selection and education.

摘要

目的

脊柱肿瘤切除术后的死亡率是一种毁灭性的结果。朴素贝叶斯机器学习算法可用于手术规划,以预测死亡率。在这项研究中,我们使用朴素贝叶斯分类算法来预测脊柱肿瘤切除术后 30 天内的死亡率。

方法

从国家手术质量倡议计划中选择了 2006 年至 2018 年间接受椎板切除术以切除椎管内肿瘤的患者。在 Python 中进行了朴素贝叶斯分类器分析。计算接收者操作特征曲线下的面积(AUC)以评估分类器在 30 天内预测死亡率的能力。在 R 中进行了多变量逻辑回归分析,以确定 30 天术后死亡率的危险因素。

结果

共有 2094 名脊柱肿瘤手术患者纳入研究。30 天死亡率为 5.16%。分类器的 AUC 为 0.898,超过了国家手术质量倡议计划死亡率概率计算器的 AUC(0.722)(P<0.0001)。多变量回归表明,吸烟史、慢性阻塞性肺疾病、播散性癌症、出血性疾病史、呼吸困难和低白蛋白水平与 30 天死亡率密切相关。

结论

朴素贝叶斯分类器可用于预测接受脊柱肿瘤切除术的患者 30 天死亡率,随着模型通过不断从输入患者数据中学习而提高准确性。通过使用算法识别高危人群并将数据应用于术前决策、患者选择和教育,从而改善患者结局。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验