Suppr超能文献

基于机器学习算法的转移性脊柱肿瘤脆弱指数的性能评估:局限性与未来方向。

Performance assessment of the metastatic spinal tumor frailty index using machine learning algorithms: limitations and future directions.

机构信息

Departments of1Neurosurgery and.

2Orthopedic Surgery, Massachusetts General Hospital; and.

出版信息

Neurosurg Focus. 2021 May;50(5):E5. doi: 10.3171/2021.2.FOCUS201113.

Abstract

OBJECTIVE

Frailty is recognized as an important consideration in patients with cancer who are undergoing therapies, including spine surgery. The definition of frailty in the context of spinal metastases is unclear, and few have studied such markers and their association with postoperative outcomes and survival. Using national databases, the metastatic spinal tumor frailty index (MSTFI) was developed as a tool to predict outcomes in this specific patient population and has not been tested with external data. The purpose of this study was to test the performance of the MSTFI with institutional data and determine whether machine learning methods could better identify measures of frailty as predictors of outcomes.

METHODS

Electronic health record data from 479 adult patients admitted to the Massachusetts General Hospital for metastatic spinal tumor surgery from 2010 to 2019 formed a validation cohort for the MSTFI to predict major complications, in-hospital mortality, and length of stay (LOS). The 9 parameters of the MSTFI were modeled in 3 machine learning algorithms (lasso regularization logistic regression, random forest, and gradient-boosted decision tree) to assess clinical outcome prediction and determine variable importance. Prediction performance of the models was measured by computing areas under the receiver operating characteristic curve (AUROCs), calibration, and confusion matrix metrics (positive predictive value, sensitivity, and specificity) and was subjected to internal bootstrap validation.

RESULTS

Of 479 patients (median age 64 years [IQR 55-71 years]; 58.7% male), 28.4% had complications after spine surgery. The in-hospital mortality rate was 1.9%, and the mean LOS was 7.8 days. The MSTFI demonstrated poor discrimination for predicting complications (AUROC 0.56, 95% CI 0.50-0.62) and in-hospital mortality (AUROC 0.69, 95% CI 0.54-0.85) in the validation cohort. For postoperative complications, machine learning approaches showed a greater advantage over the logistic regression model used to develop the MSTFI (AUROC 0.62, 95% CI 0.56-0.68 for random forest vs AUROC 0.56, 95% CI 0.50-0.62 for logistic regression). The random forest model had the highest positive predictive value (0.53, 95% CI 0.43-0.64) and the highest negative predictive value (0.77, 95% CI 0.72-0.81), with chronic lung disease, coagulopathy, anemia, and malnutrition identified as the most important predictors of postoperative complications.

CONCLUSIONS

This study highlights the challenges of defining and quantifying frailty in the metastatic spine tumor population. Further study is required to improve the determination of surgical frailty in this specific cohort.

摘要

目的

虚弱被认为是接受治疗的癌症患者(包括脊柱手术)的一个重要考虑因素。脊柱转移瘤虚弱的定义尚不清楚,很少有研究关注此类标志物及其与术后结局和生存的关系。利用国家数据库,开发了转移性脊柱肿瘤虚弱指数(MSTFI)作为预测该特定患者人群结局的工具,尚未在外部数据中进行测试。本研究旨在使用机构数据验证 MSTFI 的性能,并确定机器学习方法是否可以更好地识别虚弱指标作为结局预测指标。

方法

2010 年至 2019 年,479 例因转移性脊柱肿瘤在马萨诸塞州综合医院接受脊柱肿瘤手术的成年患者的电子健康记录数据构成了 MSTFI 验证队列,用于预测主要并发症、院内死亡率和住院时间(LOS)。MSTFI 的 9 个参数通过 3 种机器学习算法(lasso 正则化逻辑回归、随机森林和梯度提升决策树)进行建模,以评估临床结局预测和确定变量重要性。通过计算接受者操作特征曲线下的面积(AUROCs)、校准和混淆矩阵指标(阳性预测值、敏感性和特异性)来衡量模型的预测性能,并进行内部自举验证。

结果

在 479 例患者中(中位年龄 64 岁[IQR 55-71 岁];58.7%为男性),28.4%的患者脊柱手术后出现并发症。院内死亡率为 1.9%,平均 LOS 为 7.8 天。MSTFI 对预测并发症(AUROC 0.56,95%CI 0.50-0.62)和院内死亡率(AUROC 0.69,95%CI 0.54-0.85)的区分度较差。对于术后并发症,机器学习方法明显优于用于开发 MSTFI 的逻辑回归模型(随机森林的 AUROC 为 0.62,95%CI 0.56-0.68,而逻辑回归的 AUROC 为 0.56,95%CI 0.50-0.62)。随机森林模型的阳性预测值最高(0.53,95%CI 0.43-0.64),阴性预测值最高(0.77,95%CI 0.72-0.81),慢性肺部疾病、凝血障碍、贫血和营养不良被确定为术后并发症的最重要预测因素。

结论

本研究强调了在转移性脊柱肿瘤人群中定义和量化虚弱的挑战。需要进一步研究以改善对该特定队列中手术虚弱的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验