Suppr超能文献

MDIPA:一种基于非负矩阵分解的 microRNA-药物相互作用预测方法。

MDIPA: a microRNA-drug interaction prediction approach based on non-negative matrix factorization.

机构信息

Division of Biomedical Engineering.

Department of Computer Science.

出版信息

Bioinformatics. 2020 Dec 22;36(20):5061-5067. doi: 10.1093/bioinformatics/btaa577.

Abstract

MOTIVATION

Evidence has shown that microRNAs, one type of small biomolecule, regulate the expression level of genes and play an important role in the development or treatment of diseases. Drugs, as important chemical compounds, can interact with microRNAs and change their functions. The experimental identification of microRNA-drug interactions is time-consuming and expensive. Therefore, it is appealing to develop effective computational approaches for predicting microRNA-drug interactions.

RESULTS

In this study, a matrix factorization-based method, called the microRNA-drug interaction prediction approach (MDIPA), is proposed for predicting unknown interactions among microRNAs and drugs. Specifically, MDIPA utilizes experimentally validated interactions between drugs and microRNAs, drug similarity and microRNA similarity to predict undiscovered interactions. A path-based microRNA similarity matrix is constructed, while the structural information of drugs is used to establish a drug similarity matrix. To evaluate its performance, our MDIPA is compared with four state-of-the-art prediction methods with an independent dataset and cross-validation. The results of both evaluation methods confirm the superior performance of MDIPA over other methods. Finally, the results of molecular docking in a case study with breast cancer confirm the efficacy of our approach. In conclusion, MDIPA can be effective in predicting potential microRNA-drug interactions.

AVAILABILITY AND IMPLEMENTATION

All code and data are freely available from https://github.com/AliJam82/MDIPA.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

有证据表明,miRNA 是一种小分子生物,可调节基因的表达水平,并在疾病的发生或治疗中发挥重要作用。药物作为重要的化学化合物,可以与 miRNA 相互作用并改变其功能。miRNA-药物相互作用的实验鉴定既耗时又昂贵。因此,开发有效的计算方法来预测 miRNA-药物相互作用是很有吸引力的。

结果

在这项研究中,提出了一种基于矩阵分解的方法,称为 miRNA-药物相互作用预测方法(MDIPA),用于预测 miRNA 和药物之间未知的相互作用。具体来说,MDIPA 利用药物和 miRNA 之间已验证的相互作用、药物相似性和 miRNA 相似性来预测未发现的相互作用。构建了基于路径的 miRNA 相似性矩阵,同时利用药物的结构信息建立了药物相似性矩阵。为了评估其性能,我们将 MDIPA 与四个最先进的预测方法在独立数据集和交叉验证中进行了比较。这两种评估方法的结果都证实了 MDIPA 优于其他方法的性能。最后,乳腺癌案例研究中的分子对接结果证实了我们方法的有效性。总之,MDIPA 可以有效地预测潜在的 miRNA-药物相互作用。

可用性和实现

所有代码和数据均可从 https://github.com/AliJam82/MDIPA 免费获得。

补充信息

补充数据可在生物信息学在线获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验