Suppr超能文献

使用机器学习、深度学习方法进行医学图像去噪:综述。

Denoising Medical Images Using Machine Learning, Deep Learning Approaches: A Survey.

机构信息

Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Department of Electrical Engineering, Majlesi Branch, Islamic Azad University, Isfahan, Iran.

出版信息

Curr Med Imaging. 2021;17(5):578-594. doi: 10.2174/1573405616666201118122908.

Abstract

OBJECTIVE

Several denoising methods for medical images have been applied, such as Wavelet Transform, CNN, linear and Non-linear methods.

METHODS

In this paper, A median filter algorithm will be modified and the image denoising method to wavelet transform and Non-local means (NLM), deep convolutional neural network (Dn- CNN), Gaussian noise, and Salt and pepper noise used in the medical image is explained.

RESULTS

PSNR values of the CNN method are higher and showed better results than different filters (Adaptive Wiener filter, Median filter, and Adaptive Median filter, Wiener filter).

CONCLUSION

Denoising methods performance with indices SSIM, PSNR, and MSE have been tested, and the results of simulation image denoising are also presented in this article.

摘要

目的

已经应用了几种医学图像去噪方法,如小波变换、CNN、线性和非线性方法。

方法

本文将对中值滤波器算法进行修改,并解释用于医学图像的小波变换和非局部均值(NLM)、深度卷积神经网络(Dn-CNN)、高斯噪声和椒盐噪声的图像去噪方法。

结果

CNN 方法的 PSNR 值更高,并且比不同的滤波器(自适应维纳滤波器、中值滤波器和自适应中值滤波器、维纳滤波器)显示出更好的结果。

结论

使用 SSIM、PSNR 和 MSE 指标对去噪方法的性能进行了测试,并在本文中还呈现了模拟图像去噪的结果。

相似文献

5
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.用于复杂磁共振数据去噪的小波域TI类维纳滤波
Magn Reson Imaging. 2016 Oct;34(8):1128-40. doi: 10.1016/j.mri.2016.05.011. Epub 2016 May 26.

引用本文的文献

1
Computational approaches to detect small lesions in F-FDG PET/CT scans.基于计算方法的 F-FDG PET/CT 扫描中小病灶检测。
J Appl Clin Med Phys. 2021 Dec;22(12):125-139. doi: 10.1002/acm2.13451. Epub 2021 Oct 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验