Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
Theor Appl Genet. 2021 Feb;134(2):715-730. doi: 10.1007/s00122-020-03726-6. Epub 2020 Nov 20.
It is possible to make inferences regarding the feasibility and applicability of plant high-throughput phenotyping via computer simulations. Protocol validation has been a key challenge to the establishment of high-throughput phenotyping (HTP) in breeding programs. We add to this matter by proposing an innovative way for designing and validating aerial imagery-based HTP approaches with in silico 3D experiments for plant breeding purposes. The algorithm is constructed following a pipeline composed of the simulation of phenotypic values, three-dimensional modeling of trials, and image rendering. Our tool is exemplified by testing a set of experimental setups that are of interest in the context of maize breeding using a comprehensive case study. We report on how the choice of (percentile of) points in dense clouds, the experimental repeatability (heritability), the treatment variance (genetic variability), and the flight altitude affect the accuracy of high-throughput plant height estimation based on conventional structure-from-motion (SfM) and multi-view stereo (MVS) pipelines. The evaluation of both the algorithm and the case study was driven by comparisons of the computer-simulated (ground truth) and the HTP-estimated values using correlations, regressions, and similarity indices. Our results showed that the 3D experiments can be adequately reconstructed, enabling inference-making. Moreover, it suggests that treatment variance, repeatability, and the choice of the percentile of points are highly influential over the accuracy of HTP. Conversely, flight altitude influenced the quality of reconstruction but not the accuracy of plant height estimation. Therefore, we believe that our tool can be of high value, enabling the promotion of new insights and further understanding of the events underlying the practice of high-throughput phenotyping.
可以通过计算机模拟对植物高通量表型分析的可行性和适用性进行推断。方案验证一直是在育种计划中建立高通量表型分析(HTP)的关键挑战。我们通过提出一种创新的方法来解决这个问题,即设计和验证基于空中图像的 HTP 方法,并结合计算机模拟的 3D 实验,用于植物育种目的。该算法是按照一个由模拟表型值、试验的三维建模和图像渲染组成的流水线构建的。我们的工具通过使用综合案例研究来测试一组在玉米育种背景下感兴趣的实验设置进行举例说明。我们报告了在基于传统结构从运动(SfM)和多视图立体(MVS)管道的高通量植物高度估计中,密集云(百分点)中的点、实验可重复性(遗传率)、处理方差(遗传可变性)和飞行高度的选择如何影响高通量植物高度估计的准确性。对算法和案例研究的评估是通过使用相关性、回归和相似性指数对计算机模拟(地面实况)和 HTP 估计值进行比较来驱动的。我们的结果表明,3D 实验可以进行充分的重建,从而可以进行推理。此外,它表明处理方差、可重复性和点的百分位数的选择对 HTP 的准确性有很大的影响。相反,飞行高度影响重建的质量而不影响植物高度估计的准确性。因此,我们相信我们的工具具有很高的价值,可以促进对高通量表型分析实践背后的事件的新见解和进一步理解。