Suppr超能文献

玉米 SRO1e 通过调控 MBW 复合体响应非生物胁迫抑制花色素苷的合成。

Maize SRO1e represses anthocyanin synthesis through regulating the MBW complex in response to abiotic stress.

机构信息

Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.

出版信息

Plant J. 2021 Feb;105(4):1010-1025. doi: 10.1111/tpj.15083. Epub 2020 Dec 12.

Abstract

Plants experiencing abiotic stress react by generating reactive oxygen species (ROS), compounds that, if allowed to accumulate to excess, repress plant growth and development. Anthocyanins induced by abiotic stress are strong antioxidants that neutralize ROS, whereas their over-accumulation retards plant growth. Although the mechanism of anthocyanin synthesis has been revealed, how plants balance anthocyanin synthesis under abiotic stress to maintain ROS homeostasis is unknown. Here, ROS-related proteins, SIMILAR TO RCD-ONEs (SROs), were analysed in Zea mays (maize), and all six SRO1 genes were inducible by a variety of abiotic stress agents. The constitutive expression of one of these genes, ZmSRO1e, in maize as well as in Arabidopsis thaliana increased the sensitivity of the plant to abiotic stress, but repressed anthocyanin biosynthesis and ROS scavenging activity. Loss-of-function mutation of ZmSRO1e enhanced ROS tolerance and anthocyanin accumulation. We showed that ZmSRO1e competed with ZmR1 (a core basic helix-loop-helix subunit of the MYB-bHLH-WD40 transcriptional activation complex) for binding with ZmPL1 (a core MYB subunit of the complex). Thus, during the constitutive expression of ZmSRO1e, the formation of the complex was compromised, leading to the repression of genes, such as ZmA4 (encoding dihydroflavonol reductase), associated with anthocyanin synthesis. Overall, the results have revealed a mechanism that allows the products of maize SRO1e to participate in the abiotic stress response.

摘要

植物在受到非生物胁迫时会产生活性氧(ROS),这些化合物如果积累过多,会抑制植物的生长和发育。非生物胁迫诱导的花青苷是一种强大的抗氧化剂,可以中和 ROS,但其过度积累会阻碍植物的生长。尽管花青苷合成的机制已经被揭示,但植物如何在非生物胁迫下平衡花青苷的合成以维持 ROS 的稳态尚不清楚。在这里,我们分析了玉米(Zea mays)中的与 ROS 相关的蛋白质,类似于 RCD-ONEs(SROs),并且所有 6 个 SRO1 基因都可以被多种非生物胁迫诱导。这些基因中的一个基因,ZmSRO1e,在玉米和拟南芥中的组成型表达增加了植物对非生物胁迫的敏感性,但抑制了花青苷的生物合成和 ROS 清除活性。ZmSRO1e 的功能丧失突变增强了 ROS 耐受性和花青苷的积累。我们表明,ZmSRO1e 与 ZmR1(MYB-bHLH-WD40 转录激活复合物的核心碱性螺旋-环-螺旋亚基)竞争与 ZmPL1(复合物的核心 MYB 亚基)结合。因此,在 ZmSRO1e 的组成型表达过程中,复合物的形成受到干扰,导致与花青苷合成相关的基因(如编码二氢黄酮醇还原酶的 ZmA4)的表达受到抑制。总的来说,这些结果揭示了一种机制,允许玉米 SRO1e 的产物参与非生物胁迫反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验