Suppr超能文献

内含子贫乏和无内含子基因在富含内含子的植物基因家族中的出现和进化。

The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families.

机构信息

College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.

College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.

出版信息

Plant J. 2021 Feb;105(4):1072-1082. doi: 10.1111/tpj.15088. Epub 2021 Feb 9.

Abstract

Eukaryotic genes can be classified into intronless (no introns), intron-poor (three or fewer introns per gene) or intron-rich. Early eukaryotic genes were mostly intron-rich, and their alternative splicing into multiple transcripts, giving rise to different proteins, might have played pivotal roles in adaptation and evolution. Interestingly, extant plant genomes contain many gene families with one or sometimes few sub-families with genes that are intron-poor or intronless, and it remains unknown when and how these intron-poor or intronless genes have originated and evolved, and what their possible functions are. In this study, we identified 33 such gene families that contained intronless and intron-poor sub-families. Intronless genes seemed to have first emerged in early land plant evolution, while intron-poor sub-families seemed first to have appeared in green algae. In contrast to intron-rich genes, intronless genes in intron-poor sub-families occurred later, and were subject to stronger functional constraints. Based on RNA-seq analyses in Arabidopsis and rice, intronless or intron-poor genes in AP2, EF-hand_7, bZIP, FAD_binding_4, STE_STE11, CAMK_CAMKL-CHK1 and C2 gene families were more likely to play a role in response to drought and salt stress, compared with intron-rich genes in the same gene families, whereas intronless genes in the B_lectin and S_locus_glycop gene family were more likely to participate in epigenetic processes and plant development. Understanding the origin and evolutionary trajectory, as well as the potential functions, of intronless and intron-poor sub-families provides further insight into plant genome evolution and the functional divergence of genes.

摘要

真核生物基因可分为无内含子(无内含子)、内含子贫乏(每个基因有 3 个或更少的内含子)或内含子丰富。早期真核生物基因大多是内含子丰富的,其通过可变剪接成多个转录本,产生不同的蛋白质,可能在适应和进化中发挥了关键作用。有趣的是,现存植物基因组包含许多基因家族,其中一个或有时只有少数亚家族的基因是内含子贫乏或无内含子的,而这些内含子贫乏或无内含子的基因是何时以及如何起源和进化的,以及它们可能的功能是什么,目前还不清楚。在这项研究中,我们鉴定了 33 个这样的基因家族,其中包含无内含子和内含子贫乏的亚家族。无内含子基因似乎首先出现在早期陆地植物进化中,而内含子贫乏的亚家族似乎首先出现在绿藻中。与内含子丰富的基因相比,内含子贫乏亚家族中的无内含子基因出现得较晚,并且受到更强的功能约束。基于拟南芥和水稻的 RNA-seq 分析,AP2、EF-hand_7、bZIP、FAD_binding_4、STE_STE11、CAMK_CAMKL-CHK1 和 C2 基因家族中的无内含子或内含子贫乏基因比同一基因家族中的内含子丰富基因更有可能在响应干旱和盐胁迫中发挥作用,而 B_lectin 和 S_locus_glycop 基因家族中的无内含子基因更有可能参与表观遗传过程和植物发育。了解无内含子和内含子贫乏亚家族的起源和进化轨迹以及潜在功能,为植物基因组进化和基因功能分化提供了进一步的认识。

相似文献

2
Genome-wide analysis of intronless genes in rice and Arabidopsis.水稻和拟南芥中无内含子基因的全基因组分析。
Funct Integr Genomics. 2008 Feb;8(1):69-78. doi: 10.1007/s10142-007-0052-9. Epub 2007 Jun 20.
9
Intron splicing suppresses RNA silencing in Arabidopsis.内含子剪接抑制拟南芥中的 RNA 沉默。
Plant J. 2011 Oct;68(1):159-67. doi: 10.1111/j.1365-313X.2011.04676.x. Epub 2011 Aug 5.

引用本文的文献

本文引用的文献

10
The timescale of early land plant evolution.早期陆地植物进化的时间尺度。
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2274-E2283. doi: 10.1073/pnas.1719588115. Epub 2018 Feb 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验