Ryu Hongsun, Park Dae Young, McCall Kyle M, Byun Hye Ryung, Lee Yongjun, Kim Tae Jung, Jeong Mun Seok, Kim Jeongyong, Kanatzidis Mercouri G, Jang Joon I
Department of Physics, Sogang University, Seoul 04107, South Korea.
Department of Energy Science, Sungkyunkwan University, Suwon 16419, South Korea.
J Am Chem Soc. 2020 Dec 16;142(50):21059-21067. doi: 10.1021/jacs.0c09132. Epub 2020 Nov 20.
Recently, halide perovskites have gained significant attention from the perspective of efficient spintronics owing to the Rashba effect. This effect occurs as a consequence of strong spin-orbit coupling under a noncentrosymmetric environment, which can be dynamic and/or static. However, there exist intense debates on the origin of broken inversion symmetry since the halide perovskites typically crystallize into a centrosymmetric structure. In order to clarify the issue, we examine both dynamic and static effects in the all-inorganic CsPbBr and organic-inorganic CHNHPbBr (MAPbBr) perovskite single crystals by employing temperature- and polarization-dependent photoluminescence excitation spectroscopy. The perovskite single crystals manifest the dynamic effect by photon recycling in the indirect Rashba gap, causing dual peaks in the photoluminescence. However, the effect vanishes in CsPbBr at low temperatures (<50 K) accompanied by a striking color change of the crystal, arising presumably from lower degrees of freedom for inversion symmetry breaking associated with the thermal motion of the spherical Cs cation compared with the polar MA cation in MAPbBr. We also show that the static Rashba effect occurs only in MAPbBr below 90 K, presumably due to surface reconstruction via MA-cation ordering, which likely extends across a few layers from the crystal surface to the interior. We further demonstrate that this static Rashba effect can be completely suppressed upon surface treatment with polymethyl methacrylate (PMMA) coating. We believe that our results provide a rationale for the Rashba effects in halide perovskites.
最近,由于Rashba效应,卤化物钙钛矿从高效自旋电子学的角度受到了广泛关注。这种效应是在非中心对称环境下强自旋轨道耦合的结果,这种环境可以是动态的和/或静态的。然而,由于卤化物钙钛矿通常结晶为中心对称结构,关于反演对称性破缺的起源存在激烈的争论。为了阐明这个问题,我们通过使用温度和偏振依赖的光致发光激发光谱,研究了全无机CsPbBr和有机-无机CHNHPbBr(MAPbBr)钙钛矿单晶中的动态和静态效应。钙钛矿单晶通过间接Rashba能隙中的光子回收表现出动态效应,导致光致发光中出现双峰。然而,在低温(<50 K)下,CsPbBr中的这种效应消失,同时晶体颜色发生显著变化,这可能是由于与MAPbBr中的极性MA阳离子相比,球形Cs阳离子的热运动导致反演对称性破缺的自由度较低。我们还表明,静态Rashba效应仅在90 K以下的MAPbBr中出现,可能是由于通过MA阳离子有序化进行的表面重构,这种重构可能从晶体表面延伸到内部的几层。我们进一步证明,用聚甲基丙烯酸甲酯(PMMA)涂层进行表面处理可以完全抑制这种静态Rashba效应。我们相信我们的结果为卤化物钙钛矿中的Rashba效应提供了理论依据。