Neurosurgery, Duke University, USA; Neurobiology, Duke University, USA; Biomedical Engineering, Duke University, USA; Surgery and Research Branches, Durham VAMC, Durham, NC, 27710, USA.
Neurosurgery, Duke University, USA; Surgery and Research Branches, Durham VAMC, Durham, NC, 27710, USA.
Brain Stimul. 2021 Jan-Feb;14(1):80-87. doi: 10.1016/j.brs.2020.11.012. Epub 2020 Nov 18.
Transcranial electrical stimulation at an appropriate dose may demonstrate intracranial effects, including neuronal stimulation and cerebral blood flow responses.
We performed in vivo experiments on mouse cortex using transcranial alternating current [AC] stimulation to assess whether cerebral blood flow can be reliably altered by extracranial stimulation.
We performed transcranial AC electrical stimulation transversely across the closed skull in anesthetized mice, measuring transcranial cerebral blood flow with a laser Doppler probe and intracranial electrical responses as endpoint biomarkers. We calculated a stimulation dose-response function between intracranial electric field and cerebral blood flow.
Stimulation at electric field amplitudes of 5-20 mV/mm at 10-20 Hz rapidly increased cerebral blood flow (within 100 ms), which then quickly decreased with no residual effects. The time to peak and blood flow shape varied with stimulation intensity and duration, showing a linear correlation between stimulation dose and peak blood flow increase. Neither afterdischarges nor spreading depression occurred from this level of stimulation.
Extracranial stimulation amplitudes sufficient to evoke reliable blood flow changes require electric field strengths higher than what is tolerable in unanesthetized humans (<1 mV/mm), but less than electroconvulsive therapy levels (>40 mV/mm). However, anesthesia effects, spontaneous blood flow fluctuations, and sampling error may accentuate the apparent field strength needed for enhanced blood flow. The translation to a human dose-response function to augment cerebral blood flow (i.e., in stroke recovery) will require significant modification, potentially to pericranial, focused, multi-electrode application or intracranial stimulation.
适当剂量的经颅电刺激可能会产生颅内效应,包括神经元刺激和脑血流反应。
我们使用经颅交流电(AC)刺激对小鼠皮层进行体内实验,以评估颅外刺激是否能可靠地改变脑血流。
我们在麻醉小鼠的闭合颅骨上进行经颅 AC 电刺激,使用激光多普勒探头测量经颅脑血流,并将颅内电反应作为终点生物标志物。我们计算了颅内电场和脑血流之间的刺激剂量-反应函数。
在 10-20Hz 的 5-20mV/mm 的电场幅度下刺激,脑血流迅速增加(在 100ms 内),然后迅速下降,没有残留效应。达到峰值的时间和血流形状随刺激强度和持续时间而变化,刺激剂量与峰值血流增加之间呈线性相关。这种刺激水平既不会引起后放电也不会引起扩散性抑制。
足以引起可靠血流变化的颅外刺激幅度需要高于未麻醉人类可耐受的电场强度(<1mV/mm),但低于电惊厥治疗水平(>40mV/mm)。然而,麻醉效应、自发血流波动和采样误差可能会夸大增强血流所需的表观场强。将增强脑血流的人体剂量-反应函数(即在中风恢复中)进行转化将需要进行重大修改,可能需要进行颅外、聚焦、多电极应用或颅内刺激。