一项与胰腺癌风险相关的单核苷酸多态性的系统评价和网络荟萃分析。

A systematic review and network meta-analysis of single nucleotide polymorphisms associated with pancreatic cancer risk.

机构信息

Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Ruikang School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China.

Ruikang School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China.

出版信息

Aging (Albany NY). 2020 Nov 20;12(24):25256-25274. doi: 10.18632/aging.104128.

Abstract

In this meta-analysis, we systematically investigated the correlation between single nucleotide polymorphisms (SNPs) and pancreatic cancer (PC) risk. We searched PubMed, Network Science, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), China Science and Technology Periodical Database (VIP), and Wanfang databases up to January 2020 for studies on PC risk-associated SNPs. We identified 45 case-control studies (36,360 PC patients and 54,752 non-cancer individuals) relating to investigations of 27 genes and 54 SNPs for this meta-analysis. Direct meta-analysis followed by network meta-analysis and Thakkinstian algorithm analysis showed that homozygous genetic models for rs231775 (OR =0.326; 95% CI: 0.218-0.488) and rs2228570 (OR = 1.976; 95% CI: 1.496-2.611) and additive gene model for rs9895829 (OR = 1.231; 95% CI: 1.143-1.326) were significantly associated with PC risk. rs9895829 was the most optimal SNP for diagnosing PC susceptibility with a false positive report probability < 0.2 at a stringent prior probability value of 0.00001. This systematic review and meta-analysis suggest that rs9895829, rs2228570, and rs231775 are significantly associated with PC risk. We also demonstrate that rs9895829 is a potential diagnostic biomarker for estimating PC risk.

摘要

在这项荟萃分析中,我们系统地研究了单核苷酸多态性(SNPs)与胰腺癌(PC)风险之间的相关性。我们检索了PubMed、Network Science、EMBASE、Cochrane Library、中国国家知识基础设施(CNKI)、中国科技期刊数据库(VIP)和万方数据库,截至 2020 年 1 月,以获取与 PC 风险相关的 SNPs 研究。我们确定了 45 项病例对照研究(36360 名 PC 患者和 54752 名非癌症个体),涉及 27 个基因和 54 个 SNPs 的调查,用于这项荟萃分析。直接荟萃分析后进行网络荟萃分析和 Thakkinstian 算法分析表明,rs231775(OR=0.326;95%CI:0.218-0.488)和 rs2228570(OR=1.976;95%CI:1.496-2.611)的纯合遗传模型以及 rs9895829(OR=1.231;95%CI:1.143-1.326)的加性基因模型与 PC 风险显著相关。rs9895829 是诊断 PC 易感性的最佳 SNP,在严格的先验概率值为 0.00001 时,假阳性报告概率 <0.2。这项系统评价和荟萃分析表明,rs9895829、rs2228570 和 rs231775 与 PC 风险显著相关。我们还表明,rs9895829 是一种潜在的诊断生物标志物,用于估计 PC 风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/166e/7803556/01e039575a51/aging-12-104128-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索