Kirkey Aaron, Luber Erik J, Cao Bing, Olsen Brian C, Buriak Jillian M
Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):54596-54607. doi: 10.1021/acsami.0c14922. Epub 2020 Nov 23.
All-small-molecule organic photovoltaic (OPV) cells based upon the small-molecule donor, DRCN5T, and nonfullerene acceptors, ITIC, IT-M, and IT-4F, were optimized using Design of Experiments (DOE) and machine learning (ML) approaches. This combination enables rational sampling of large parameter spaces in a sparse but mathematically deliberate fashion and promises economies of precious resources and time. This work focused upon the optimization of the core layer of the OPV device, the bulk heterojunction (BHJ). Many experimental processing parameters play critical roles in the overall efficiency of a given device and are often correlated and thus are difficult to parse individually. DOE was applied to the (i) solution concentration of the donor and acceptor ink used for spin-coating, (ii) the donor fraction, (iii) the temperature, and (iv) duration of the annealing of these films. The ML-based approach was then used to derive maps of the power conversion efficiencies (PCE) landscape for the first and second rounds of optimization to be used as guides to determine the optimal values of experimental processing parameters with respect to PCE. This work shows that with little knowledge of a potential combination of components for a given BHJ, a large parameter space can be effectively screened and investigated to rapidly determine its potential for high-efficiency OPVs.
基于小分子供体DRCN5T和非富勒烯受体ITIC、IT-M以及IT-4F的所有小分子有机光伏(OPV)电池,均采用实验设计(DOE)和机器学习(ML)方法进行了优化。这种组合能够以稀疏但数学上精心设计的方式对大参数空间进行合理采样,并有望节省宝贵的资源和时间。这项工作聚焦于OPV器件的核心层——体异质结(BHJ)的优化。许多实验处理参数对给定器件的整体效率起着关键作用,并且常常相互关联,因此难以单独解析。DOE被应用于(i)用于旋涂的供体和受体墨水的溶液浓度,(ii)供体比例,(iii)温度,以及(iv)这些薄膜的退火持续时间。基于ML的方法随后被用于推导第一轮和第二轮优化的功率转换效率(PCE)图谱,以作为确定实验处理参数相对于PCE的最佳值的指导。这项工作表明,在对给定BHJ的潜在组件组合了解甚少的情况下,可以有效地筛选和研究大参数空间,以快速确定其用于高效OPV的潜力。