Suppr超能文献

使用具有高效目标生成的可微锚定来提高基于锚定的检测器的性能和适应性。

Improving Performance and Adaptivity of Anchor-Based Detector Using Differentiable Anchoring With Efficient Target Generation.

作者信息

Dou Zeyang, Gao Kun, Zhang Xiaodian, Wang Hong, Wang Junwei

出版信息

IEEE Trans Image Process. 2021;30:712-724. doi: 10.1109/TIP.2020.3038349. Epub 2020 Dec 4.

Abstract

Most anchor-based object detection methods have adopted predefined anchor boxes as regression references. However, the proper setting of anchor boxes may vary significantly across different datasets, improperly designed anchors severely limit the performances and adaptabilities of detectors. Recently, some works have tackled this problem by learning anchor shapes from datasets. However, all of these works explicitly or implicitly rely on predefined anchors, limiting universalities of detectors. In this paper, we propose a simple learning anchoring scheme with an effective target generation method to cast off predefined anchor dependencies. The proposed anchoring scheme, named as differentiable anchoring, simplifies learning anchor shape process by adding only one branch in parallel with the existing classification and bounding box regression branches. The proposed target generation method, including the L norm ball approximation and the optimization difficulty-based pyramid level assignment approach, generates positive samples for the new branch. Compared with existing learning anchoring-based approaches, the proposed method doesn't require any predefined anchors, while tremendously improving performances and adaptiveness of detectors. The proposed method can be seamlessly integrated to Faster RCNN, RetinaNet, and SSD, improving the detection mAP by 2.8%, 2.1% and 2.3% respectively on MS COCO 2017 test-dev set. Moreover, the differentiable anchoring-based detectors can be directly applied to specific scenarios without any modification of the hyperparameters or using a specialized optimization. Specifically, the differentiable anchoring-based RetinaNet achieves very competitive performances on tiny face detection and text detection tasks, which are not well handled by the conventional and guided anchoring based RetinaNets for the MS COCO dataset.

摘要

大多数基于锚点的目标检测方法都采用预定义的锚框作为回归参考。然而,锚框的适当设置在不同数据集之间可能有很大差异,设计不当的锚点会严重限制检测器的性能和适应性。最近,一些工作通过从数据集中学习锚点形状来解决这个问题。然而,所有这些工作都明确或隐含地依赖于预定义的锚点,限制了检测器的通用性。在本文中,我们提出了一种简单的学习锚定方案和一种有效的目标生成方法,以摆脱对预定义锚点的依赖。所提出的锚定方案称为可微锚定,通过在现有的分类和边界框回归分支之外仅添加一个并行分支来简化学习锚点形状的过程。所提出的目标生成方法,包括L范数球近似和基于优化难度的金字塔级别分配方法,为新分支生成正样本。与现有的基于学习锚定的方法相比,该方法不需要任何预定义的锚点,同时极大地提高了检测器的性能和适应性。该方法可以无缝集成到Faster RCNN、RetinaNet和SSD中,在MS COCO 2017测试开发集上分别将检测mAP提高了2.8%、2.1%和2.3%。此外,基于可微锚定的检测器可以直接应用于特定场景,而无需对超参数进行任何修改或使用专门的优化。具体而言,基于可微锚定的RetinaNet在微小面部检测和文本检测任务上取得了非常有竞争力的性能,而对于MS COCO数据集,传统的和基于引导锚定的RetinaNet在这些任务上处理得并不好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验