Suppr超能文献

RatioNet:用于目标检测的比率预测网络。

RatioNet: Ratio Prediction Network for Object Detection.

机构信息

Department of Information, Beijing University of Technology, Beijing 100124, China.

出版信息

Sensors (Basel). 2021 Mar 1;21(5):1672. doi: 10.3390/s21051672.

Abstract

In object detection of remote sensing images, anchor-free detectors often suffer from false boxes and sample imbalance, due to the use of single oriented features and the key point-based boxing strategy. This paper presents a simple and effective anchor-free approach-RatioNet with less parameters and higher accuracy for sensing images, which assigns all points in ground-truth boxes as positive samples to alleviate the problem of sample imbalance. In dealing with false boxes from single oriented features, global features of objects is investigated to build a novel regression to predict boxes by predicting width and height of objects and corresponding ratios of l_ratio and t_ratio, which reflect the location of objects. Besides, we introduce ratio-center to assign different weights to pixels, which successfully preserves high-quality boxes and effectively facilitates the performance. On the MS-COCO test-dev set, the proposed RatioNet achieves 49.7% AP.

摘要

在遥感图像目标检测中,由于使用单一定向特征和基于关键点的框定策略,无锚探测器经常会出现误报框和样本不平衡的问题。本文提出了一种简单而有效的无锚方法——RatioNet,该方法具有较少的参数和更高的遥感图像精度,它将所有真实框中的点都分配为正样本,以减轻样本不平衡的问题。在处理单一定向特征的误报框时,我们研究了对象的全局特征,通过预测对象的宽度和高度以及相应的 l_ratio 和 t_ratio 比值来构建新的回归来预测框,这反映了对象的位置。此外,我们引入了 ratio-center 为像素分配不同的权重,成功地保留了高质量的框,并有效地提高了性能。在 MS-COCO test-dev 数据集上,所提出的 RatioNet 实现了 49.7%的 AP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a5/7957549/59319aa307f1/sensors-21-01672-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验