Suppr超能文献

基于MC-LCNN模型的复杂环境下药用菊花检测

Medicinal Chrysanthemum Detection under Complex Environments Using the MC-LCNN Model.

作者信息

Qi Chao, Chang Jiangxue, Zhang Jiayu, Zuo Yi, Ben Zongyou, Chen Kunjie

机构信息

College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.

College of Intelligent Engineering and Technology, Jiangsu Vocational Institute of Commerce, Nanjing 211168, China.

出版信息

Plants (Basel). 2022 Mar 22;11(7):838. doi: 10.3390/plants11070838.

Abstract

Medicinal chrysanthemum detection is one of the desirable tasks of selective chrysanthemum harvesting robots. However, it is challenging to achieve accurate detection in real time under complex unstructured field environments. In this context, we propose a novel lightweight convolutional neural network for medicinal chrysanthemum detection (MC-LCNN). First, in the backbone and neck components, we employed the proposed residual structures MC-ResNetv1 and MC-ResNetv2 as the main network and embedded the custom feature extraction module and feature fusion module to guide the gradient flow. Moreover, across the network, we used a custom loss function to improve the precision of the proposed model. The results showed that under the NVIDIA Tesla V100 GPU environment, the inference speed could reach 109.28 FPS per image (416 × 416), and the detection precision (AP) could reach 93.06%. Not only that, we embedded the MC-LCNN model into the edge computing device NVIDIA Jetson TX2 for real-time object detection, adopting a CPU-GPU multithreaded pipeline design to improve the inference speed by 2FPS. This model could be further developed into a perception system for selective harvesting chrysanthemum robots in the future.

摘要

药用菊花检测是选择性菊花采摘机器人期望实现的任务之一。然而,在复杂的非结构化田间环境下实时实现准确检测具有挑战性。在此背景下,我们提出了一种用于药用菊花检测的新型轻量级卷积神经网络(MC-LCNN)。首先,在主干和颈部组件中,我们采用所提出的残差结构MC-ResNetv1和MC-ResNetv2作为主网络,并嵌入自定义特征提取模块和特征融合模块来引导梯度流。此外,在整个网络中,我们使用自定义损失函数来提高所提模型的精度。结果表明,在NVIDIA Tesla V100 GPU环境下,推理速度可达每张图像109.28 FPS(416×416),检测精度(AP)可达93.06%。不仅如此,我们将MC-LCNN模型嵌入到边缘计算设备NVIDIA Jetson TX2中进行实时目标检测,采用CPU-GPU多线程流水线设计将推理速度提高了2 FPS。该模型未来可进一步发展成为选择性采摘菊花机器人的感知系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验